A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Screening biomarkers for autism spectrum disorder using plasma proteomics combined with machine learning methods. | LitMetric

Background And Aims: Autism spectrum disorder (ASD) is a common neurodevelopmental disorder in children. Early intervention is effective. Investigation of novel blood biomarkers of ASD facilitates early detection and intervention.

Materials And Methods: Sequential window acquisition of all theoretical spectra-mass spectrometry (SWATH-MS)-based proteomics technology and 30 DSM-V defined ASD cases versus age- and sex-matched controls were initially evaluated, and candidate biomarkers were screened using machine learning methods. Candidate biomarkers were validated by targeted proteomics multiple reaction monitoring (MRM) analysis using an independent group of 30 ASD cases vs. controls.

Results: Fifty-one differentially expressed proteins (DEPs) were identified by SWATH analysis. They were associated with the immune response, complements and coagulation cascade pathways, and apolipoprotein-related metabolic pathways. Machine learning analysis screened 10 proteins as biomarker combinations (TFRC, PPBP, APCS, ALDH1A1, CD5L, SPARC, FGG, SHBG, S100A9, and PF4V1). In the MRM analysis, four proteins (PPBP, APCS, FGG, and PF4V1) were significantly different between the groups, and their combination as a screening indicator showed high potential (AUC = 0.8087, 95 % confidence interval 0.6904-0.9252, p < 0.0001).

Conclusions: Our study provides data that suggests that a few plasma proteins have potential use in screening for ASD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cca.2024.120018DOI Listing

Publication Analysis

Top Keywords

machine learning
12
autism spectrum
8
spectrum disorder
8
learning methods
8
asd cases
8
candidate biomarkers
8
mrm analysis
8
ppbp apcs
8
screening biomarkers
4
biomarkers autism
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!