Background: Dysregulation of epigenetic processes and abnormal epigenetic profiles are associated with various metabolic disorders. Nutrition, as an environmental factor, can induce epigenetic changes through both direct exposure and transgenerational inheritance, continuously altering gene expression and shaping the phenotype. Nutrients consumed through food or supplementation, such as vitamin B12, folate, vitamin B6, and choline, play a pivotal role in DNA methylation, a critical process for gene regulation. Additionally, there is mounting evidence that the expression of non-coding RNAs (ncRNAs) can be modulated by the intake of specific nutrients and natural compounds, thereby influencing processes involved in the onset and progression of metabolic diseases.
Summary: Evidence suggests that dietary patterns, weight loss interventions, nutrients and nutritional bioactive compounds can modulate the expression of various microRNA (miRNAs) and DNA methylation levels, contributing to the development of metabolic disorders such as obesity and type 2 diabetes. Furthermore, several studies have proposed that DNA methylation and miRNA expression could serve as biomarkers for the effects of weight loss programs.
Key Message: Despite ongoing debate regarding the effects of nutrient supplementation on DNA methylation levels and the expression of ncRNAs, certain DNA methylation marks and ncRNA expressions might predict the risk of metabolic disorders and act as biomarkers for forecasting the success of therapies within the framework of precision medicine and nutrition. The role of DNA methylation and miRNA expression as potential mediators of the effects of weight loss underscores their potential as biomarkers for the outcomes of weight loss programs. This highlights the influence of dietary patterns and weight loss interventions on the regulation of miRNA expression and DNA methylation levels, suggesting an interaction between these epigenetic factors and the body's response to weight loss.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000541000 | DOI Listing |
Funct Integr Genomics
January 2025
School of Medical Technology, Tianjin Medical University, Tianjin, 300203, China.
Clear cell renal cell carcinoma (ccRCC) is a highly malignant tumor characterized by a significant propensity for recurrence and metastasis. DNA methylation has emerged as a critical epigenetic mechanism with substantial utility in cancer diagnosis. In this study, multi-omics data were utilized to investigate the target genes regulated by the transcription factor MYC-associated zinc finger protein (MAZ) in ccRCC, leading to the identification of thymidine phosphorylase (TYMP) as a gene with notably elevated expression in ccRCC.
View Article and Find Full Text PDFGeroscience
January 2025
Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.
Rheumatoid arthritis (RA) is an age-related chronic inflammatory disease which may include accelerated biological ageing processes in its pathogenesis. To determine if increased biological age is associated with risk of RA and/or is present once disease is established. We used DNA methylation to compare biological age (epigenetic age) of immune cells in adults at risk of RA and those with confirmed RA, including twins discordant for RA.
View Article and Find Full Text PDFNutrients
December 2024
2nd Department of Gynecology and Obstetrics, University Hospital Bratislava and Comenius University, 821 01 Bratislava, Slovakia.
Neural tube defects (NTDs) are malformations of the central nervous system that represent the second most common cause of congenital morbidity and mortality, following cardiovascular abnormalities. Maternal nutrition, particularly folic acid, a B vitamin, is crucial in the etiology of NTDs. FA plays a key role in DNA methylation, synthesis, and repair, acting as a cofactor in one-carbon transfer reactions essential for neural tube development.
View Article and Find Full Text PDFNutrients
December 2024
Department of Nutrition, Texas A&M University, College Station, TX 77843, USA.
Background/objectives: This study builds on previous findings from mouse models, which showed that maternal overnutrition induced by a high-fat diet (HFD) promotes metabolic-associated fatty liver disease (MAFLD) in offspring, linked to global DNA hypermethylation. We explored whether epigenetic modulation with 5-Aza-CdR, a DNA methylation inhibitor, could prevent MAFLD in offspring exposed to maternal overnutrition.
Methods: The offspring mice from dams of maternal overnutrition were fed either a chow diet or a high-fat diet (HFD) for 10 weeks.
Nutrients
December 2024
Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain.
Background And Objectives: Depression often results in premature aging, which increases the risk of other chronic diseases, but very few studies have analyzed the association between epigenetic biomarkers of aging and depressive symptoms. Similarly, limited research has examined the joint effects of adherence to the Mediterranean diet (MedDiet) and chronotype on depressive symptoms, accounting for sex differences. Therefore, these are the objectives of our investigation in a Mediterranean population at high cardiovascular risk.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!