Microalgae-based approaches serve as promising methods for the remediation of pharmaceutical contaminants (PCs) compared to conventional wastewater treatment processes. However, how to decrease hydraulic retention times of the microalgal system currently has been one of the main bottlenecks. This study constructed an unexpected synergistic extra-chemical/intra-biological degradation system by adding 5.95 mM bicarbonate to the microalgal system, which achieved complete removal (100%) of a representative PC, doxylamine (DOX) in 96 h, compared to that 192 h in the control. Removal capacities and mass balance analyses demonstrated that biodegradation rate per unit microalgal density was significantly increased by 207%. Further analyses using transcriptomic, enzymatic inhibiting tests, and high-resolution mass spectrometry revealed that after addition of bicarbonate for metabolism of DOX, a hydrolase (CYP97C1) and a primary amine oxidase (TynA) can transform DOX into doxylamine N-oxide and an intermediate (CHNO) with a m/z of 244.1335. Meanwhile, bicarbonate reacted with microalgae-excreted hydrogen peroxide to form more oxidative radicals such as superoxide and hydroxyl radicals extracellularly, which promised the extracellular degradation of DOX according to the oxidative radical inhibiting tests. Further investigation showed addiing bicarbonate to the microalgal system improved the removal rate of 17 PCs by up to 500.8%. Therefore, this study not only developed an approach to enhance treatment efficiencies of diverse PCs by microalgae within a shorter time, but also carried unique mechanistic insights into the underlying principles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2024.122682 | DOI Listing |
J Environ Manage
January 2025
Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China.
Microalgae technology is highly attractive in the realm of wastewater treatment and CO removal. However, during the cultivation of microalgae, the phenomenon of light attenuation intensifies with the increasing cell concentration, resulting in a decrement in microalgal growth rate. To maintain high light transmittance and growth rate of microalgae, this study introduces a two-step pre-harvesting process involving flocculation and filtration within an airlift photobioreactor.
View Article and Find Full Text PDFWater Res
January 2025
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China. Electronic address:
The microalgal-bacterial consortium (MBC) system is recognized as an advanced approach for nitrogen and phosphorus removal in wastewater treatment. However, the influence of microalgae on bacterial community dynamics and niche differentiation across varying seasonal conditions remains unexplored. In this study, we established a pilot-scale continuous-flow MBC system to disentangle, for the first time, the impact of microalgae on seasonal bacterial community succession by conducting monthly time-series sampling over a full seasonal cycle.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
The Biotechnology Center, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
This study reports the isolation and characterization of highly resistant bacterial and microalgal strains from an Egyptian wastewater treatment station to cyanide-containing compounds. The bacterial strain was identified as Bacillus licheniformis by 16S rRNA gene sequencing. The isolate removed up to 1 g L potassium cyanide, 3 g L benzonitrile, and 1 g L sodium salicylate when incubated as 10% v/v in MSM at 30 ℃.
View Article and Find Full Text PDFN Biotechnol
January 2025
Research Division Agroecology and Environment, Agroscope, Zurich, Switzerland.
Microalgae are a diverse group of photosynthetic microorganisms that can be exploited to produce sustainable food and feed products, alleviate environmental pollution, or sequester CO to mitigate climate change, among other uses. To optimize resource use and integrate industrial waste streams, it is essential to consider factors such as the biology and cultivation parameters of the microalgal strains, as well as the cultivation system and processing technologies employed. This paper reviews the main commercial applications of microalgae (including cyanobacteria) and examines the biological and biotechnological aspects critical to the sustainable processing of microalgal biomass and its derived compounds.
View Article and Find Full Text PDFJ Extracell Vesicles
January 2025
Cell-Tech HUB and Institute for Research and Biomedical Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy.
The application of extracellular vesicles (EVs) as therapeutics or nanocarriers in cell-free therapies necessitates meticulous evaluations of different features, including their identity, bioactivity, batch-to-batch reproducibility, and stability. Given the inherent heterogeneity in EV preparations, this assessment demands sensitive functional assays to provide key quality control metrics, complementing established methods to ensure that EV preparations meet the required functionality and quality standards. Here, we introduce the detectEV assay, an enzymatic-based approach for assessing EV luminal cargo bioactivity and membrane integrity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!