Radiographer Education and Learning in Artificial Intelligence (REAL-AI): A survey of radiographers, radiologists, and students' knowledge of and attitude to education on AI.

Radiography (Lond)

Ulster University, School of Health Sciences, Faculty of Life and Health Sciences, Shore Road, Newtownabbey, Northern Ireland, United Kingdom.

Published: December 2024

Introduction: In Autumn 2023, amendments to the Health and Care Professions Councils (HCPC) Standards of Proficiency for Radiographers were introduced requiring clinicians to demonstrate awareness of the principles of AI and deep learning technology, and its application to practice' (HCPC 2023; standard 12.25). With the rapid deployment of AI in departments, staff must be prepared to implement and utilise AI. AI readiness is crucial for adoption, with education as a key factor in overcoming fear and resistance. This survey aimed to assess the current understanding of AI among students and qualified staff in clinical practice.

Methods: A survey targeting radiographers (diagnostic and therapeutic), radiologists and students was conducted to gather demographic data and assess awareness of AI in clinical practice. Hosted online via JISC, the survey included both closed and open-ended questions and was launched in March 2023 at the European Congress of Radiology (ECR).

Results: A total of 136 responses were collected from participants across 25 countries and 5 continents. The majority were diagnostic radiographers 56.6 %, followed by students 27.2 %, dual-qualified 3.7 % and radiologists 2.9 %. Of the respondents, 30.1 % of respondents indicated that their highest level of qualification was a Bachelor's degree, 29.4 % stated that they are currently using AI in their role, whilst 27 % were unsure. Only 10.3 % had received formal AI training.

Conclusion: This study reveals significant gaps in training and understanding of AI among medical imaging staff. These findings will guide further research into AI education for medical imaging professionals.

Implications For Practice: This paper lays foundations for future qualitative studies on the provision of AI education for medical imaging professionals, helping to prepare the workforce for the evolving role of AI in medical imaging.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.radi.2024.10.010DOI Listing

Publication Analysis

Top Keywords

medical imaging
16
education medical
8
radiographer education
4
education learning
4
learning artificial
4
artificial intelligence
4
intelligence real-ai
4
survey
4
real-ai survey
4
radiographers
4

Similar Publications

The goal of this study was to determine how radiologists' rating of image quality when using 0.5T Magnetic Resonance Imaging (MRI) compares to Computed Tomography (CT) for visualization of pathology and evaluation of specific anatomic regions within the paranasal sinuses. 42 patients with clinical CT scans opted to have a 0.

View Article and Find Full Text PDF

Vertebral collapse (VC) following osteoporotic vertebral compression fracture (OVCF) often requires aggressive treatment, necessitating an accurate prediction for early intervention. This study aimed to develop a predictive model leveraging deep neural networks to predict VC progression after OVCF using magnetic resonance imaging (MRI) and clinical data. Among 245 enrolled patients with acute OVCF, data from 200 patients were used for the development dataset, and data from 45 patients were used for the test dataset.

View Article and Find Full Text PDF

Using Fourier Transform Infrared spectroscopy (FTIR), it is possible to show chemical composition of materials and / or profile chemical changes occurring in tissues, cells, and body fluids during onset and progression of diseases. For diagnostic application, the use of blood would be the most appropriate in biospectroscopy studies since, (i) it is easily accessible and, (ii) enables frequent analyses of biochemical changes occurring in pathological states. At present, different studies have investigated potential of serum, plasma and sputum being alternative biofluids for lung cancer detection using FTIR.

View Article and Find Full Text PDF

Immune checkpoint inhibitor (ICI) treatment has proven successful for advanced melanoma, but is associated with potentially severe toxicity and high costs. Accurate biomarkers for response are lacking. The present work is the first to investigate the value of deep learning on CT imaging of metastatic lesions for predicting ICI treatment outcomes in advanced melanoma.

View Article and Find Full Text PDF

Early prediction of patient responses to neoadjuvant chemotherapy (NACT) is essential for the precision treatment of early breast cancer (EBC). Therefore, this study aims to noninvasively and early predict pathological complete response (pCR). We used dynamic ultrasound (US) imaging changes acquired during NACT, along with clinicopathological features, to create a nomogram and construct a machine learning model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!