Colorimetric and smartphone-visual detection of biothiols in human serum and red wine based on POD-like activity of Fe-CDs.

Spectrochim Acta A Mol Biomol Spectrosc

Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China. Electronic address:

Published: February 2025

AI Article Synopsis

Article Abstract

An efficient mimic peroxidase platform of Fe-CDs/GOx based on the hybrid cascade system to produce in-situ HO for the visualized detection of glucose has been also developed in our group. Herein, the [Fe-CDs + HO + TMB] system was further performed to detect the biothiols (GSH, Cys, and Hcy) as representatives of the -SH group. The result exhibits that the higher concentration of biothiols can cause the absorbance signal at 652 nm to decrease, and the deep-blue color of oxTMB turns green until it is faded in 20 min by the naked eye. The colorimetric method showed the LOD are 0.54, 0.29, and 1.41 μM for GSH, Cys, and Hcy respectively, without interference in the presence of other amino acids. The smartphone-based and paper-based determination display good respect for biothiols in human serum or GSH in red wine. These simple and convenient strategies provide potential applications in the fields of clinical diagnosis and foods.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2024.125280DOI Listing

Publication Analysis

Top Keywords

biothiols human
8
human serum
8
red wine
8
gsh cys
8
cys hcy
8
colorimetric smartphone-visual
4
smartphone-visual detection
4
biothiols
4
detection biothiols
4
serum red
4

Similar Publications

Ultrasensitive platform for the determination of biothiols using aggregation-induced emission of gold-cysteine nanosheets.

Biosens Bioelectron

January 2025

Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, China; Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory of Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China. Electronic address:

Highly ordered ultrathin nanosheets (NSs) of Au(I)-Cys were fabricated through aggregation-induced supramolecular self-assembly triggered by an extended agitation in an alkaline environment. The synthesized Au(I)-Cys NSs exhibited intense luminescence and exceptional chirality. Remarkably, additions of biothiols to Au(I)-Cys NSs have significantly enhanced their luminescence emission, and circular dichroism properties coupled with morphological modulations into nanoflowers, nanodendrites, or closely packed aggregates.

View Article and Find Full Text PDF

Nitrile-aminothiol bioorthogonal near-infrared fluorogenic probes for ultrasensitive in vivo imaging.

Nat Commun

January 2025

State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.

Bioorthogonal chemistry-mediated self-assembly holds great promise for dynamic molecular imaging in living organisms. However, existing approaches are limited to nanoaggregates with 'always-on' signals, suffering from high signal-to-background ratio (SBR) and compromised detection sensitivity. Herein we report a nitrile-aminothiol (NAT) bioorthogonal fluorogenic probe (CyNA-SS-FK) for ultrasensitive diagnosis of orthotopic hepatocellular carcinoma.

View Article and Find Full Text PDF

Discerning and quantifying the critical biothiols cysteine (Cys), homocysteine (Hcy), and glutathione (GSH) are vital for understanding their synergistic roles in biological systems. In this study, we synthesized a series of phenylethynylcoumarin fluorescent probes with varied structures to investigate the mechanisms underlying biothiol detection. We found that different substituents (-OCH, -H, -CN) at the -position of the phenylacetylene, combined with an aldehyde group at the 3-position of the coumarin, significantly affected the probes' reactivity and produced distinct response patterns toward biothiols.

View Article and Find Full Text PDF

Dyes-encapsulated metal-organic cage as fluorescence sensor array for the auxiliary differential diagnosis of MCD and FSGS in early renal disorders.

Biosens Bioelectron

March 2025

Center of Advanced Analysis and Gene Sequencing, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan, 450001, PR China.

Both minimal change disease (MCD) and focal segmental glomerular sclerosis (FSGS) are the pathological types of primary nephrotic syndrome (PNS) and cannot be readily distinguished owing to their highly similar clinical presentations. Currently, methods for clinical MCD and FSGS diagnosis still rely on invasive renal biopsy which impede rapid and accurate diagnosis for timely treatment management. In this study, a novel diagnostic strategy by introducing the dyes with spironolactone structure into the metal-organic cage to construct three dye@MOCs composites has been developed and employed as fluorescence sensor array for assisting in the auxiliary differential diagnosis of MCD and FSGS based on the distinguishable biothiols in urine.

View Article and Find Full Text PDF

Here, we present the development of a pyranopyrazole-based chemosensor (P1) that serves as a reliable colorimetric chemosensor for the identification of biothiols, namely glutathione (GSH), homocysteine (Hcy), and cysteine (Cys). We extensively studied the interaction of P1 with several amino acids (Cys, Ala, His, Ile, Leu, Lys, Ser, Trp, Val, Pro, Phe, Arg) and other biothiols (Hcy and GSH) using colorimetric methods and UV-visible spectroscopy. The results indicated that P1 endures a visible color change in the presence of biothiols, rendering it a practical tool for detection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!