Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Neuromorphic bioelectronics aim to integrate electronics with biological systems yet encounter challenges in biocompatibility, operating voltages, power consumption, and stability. This study presents biocompatible neuromorphic devices fabricated from acellular dermal matrix (ADM) derived from porcine dermis using low-temperature supercritical CO extraction. The ADM preserves the natural scaffold structure of collagen and minimizes immunogenicity by eliminating cells, fats, and noncollagenous impurities, ensuring excellent biocompatibility. The ADM-based devices emulate biological ion channels with biphasic membrane current modulation, exhibiting temperature dependency and pH sensitivity. It operates at an ultralow voltage of 1 mV and demonstrates reliable synaptic modulation exceeding 4 × 10 endurance cycles. The activation voltage can be theoretically as low as 59 μV, comparable to brainwave signals with a power of merely 7 aJ/event. Furthermore, a brain-like forgetting visualization algorithm is developed, leveraging the synaptic forgetting plasticity of ADM-based devices to achieve complex computing tasks in a highly energy-efficient manner. Neuromorphic devices based on ADM not only hold potential in implantable biointerfaces due to their exceptional biocompatibility, ultralow voltage, and power but also provide a feasible way for energy-efficient computing paradigms through a synergistic hardware-software approach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.4c10383 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!