A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

CATOM : Causal Topology Map for Spatiotemporal Traffic Analysis with Granger Causality in Urban Areas. | LitMetric

The transportation network is an important element in an urban system that supports daily activities, enabling people to travel from one place to another. One of the key challenges is the network complexity, which is composed of many node pairs distributed over the area. This spatial characteristic results in the high dimensional network problem in understanding the 'cause' of problems such as traffic congestion. Recent studies have proposed visual analytics systems aimed at understanding these underlying causes. Despite these efforts, the analysis of such causes is limited to identified patterns. However, given the intricate distribution of roads and their mutual influence, new patterns continuously emerge across all roads within urban transportation. At this stage, a well-defined visual analytics system can be a good solution for transportation practitioners. In this paper, we propose a system, CATOM (Causal Topology Map), for the cause-effect analysis of traffic patterns based on Granger causality for extracting causal topology maps. CATOM discovers causal relationships between roads through the Granger causality test and quantifies these relationships through the causal density. During the design process, the system was developed to fully utilize spatial information with visualization techniques to overcome the previous problems in the literature. We also evaluate the usability of our approach by conducting a SUS(System Usability Scale) test and traffic cause analysis with the real-world data from two study sites in collaboration with domain experts.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TVCG.2024.3489676DOI Listing

Publication Analysis

Top Keywords

causal topology
12
granger causality
12
catom causal
8
topology map
8
traffic analysis
8
visual analytics
8
map spatiotemporal
4
traffic
4
spatiotemporal traffic
4
analysis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!