Reduced expression of the IGFBP6 protein leads to an increase in the metastatic potential of breast cancer (BC) cells. The level of protein synthesis in tumor cells is increased, leading to a compensatory adjustment of proteostasis. One of the tools used to study proteostasis is protein toxins of the RIP-II family, which irreversibly inactivate ribosomes (particularly, viscumin). We investigated the effect of IGFBP6 gene knockdown on the proteostasis in the BC cell line MDA-MB-231. Ribosomes from MDA-MB-231 cells, knockdown for the IGFBP6 gene, are less efficiently modified by the toxin. This is probably due to the reduced transport of the viscumin catalytic subunit from the ER to the cytoplasm. MDA-MB-231 cells showed reduced expression of the retrotranslocon HRD1/Derlin subunit, which is a component of the ER-associated protein degradation system (ERAD). For ATF4 transcription factor, which is a part of the ER unfolded protein response (UPR) pathway, an increased expression of its targets was found.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1134/S1607672924600714 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!