Objectives: This study evaluated the mechanical, optical, microstructural, surface, and adhesive behavior of a 3D printing resin comparing it with a machinable resin composite.

Materials And Methods: Specimens of different sizes and shapes were either printed (Vitality, Smart Dent) or machinable (Grandio Blocs, Voco GmbH) resin composites with similar composition were prepared. Surface and mechanical characterization were performed with Knoop hardness, flexural strength (three-point-bending), and elastic modulus tests. The wear of the tested materials was evaluated against steatite antagonists. The optical properties stability (color change, ΔE and translucency, TP) were observed after staining in red wine. In addition, the bond strength of the resin composites to two resin cement protocols were investigated with microshear bond strength tests at baseline and after thermocycling. Scanning electron microscope (SEM) coupled with Energy-Dispersive X-ray Spectroscopy (EDS) was used for microstructural and chemical characterization. Statistical analyses were performed with t- and ANOVA tests.

Results: Hardness values (132.76 (16.32) KH- Machinable and 35.87 (2.78) KH - Printed), flexural strength (172.17 (26.99) MPa - Machinable and 88.69 (8.39) MPa - Printed), color and translucency change (1.86 (0.31)/0.06 - Machinable and 3.73 (0.36)/9,16- Printed), and wear depth (24.97 mm (3.60)- Machinable and 7.16 mm (2.84) - Printed) were statistically different. Average Regarding bond strength, mean values (MPa) for non-aged and aged groups were respectively 21.76 (6.64) / 31.9 (12.66) for Bifix cement (Voco GmbH, Cuxhaven, Germany) and 26.75 (5.14) / 24.36 (6.85) for Variolink cement (Ivoclar Vivadent, Schaan, Liechtenstein) in Printed and 17.79 (3.89) / 9.01 (3.36) ) for Bifix cement and 22.09 (6.55) / 11.01 (3.77) for Variolink cement in Machinable materials. The material and aging factors did affect bond strength but the cement factor did not (p = 0.202). No statistical differences were observed for mean roughness (Ra) between materials. The better dispersion and larger size of the inorganic particles in the Machinable resin were contrasted with the clustered smaller particles of printed resin, under SEM.

Conclusions: The mechanical properties and color stability of the machinable resin were superior to those of the printed resin, probably due to the greater amount and dispersion of inorganic particles in the Mach resin, but bond strength after aging was stronger and more stable in the printed resin.

Clinical Relevance: 3D-printed resin composites with similar compositions to machinable resin composites do not necessarily exhibit the same properties, which can impact clinical performance. Understanding these differences can assist manufacturers in improving their materials and help clinicians distinguish between materials appropriate for provisional and final restorations.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00784-024-06003-8DOI Listing

Publication Analysis

Top Keywords

bond strength
20
machinable resin
16
resin composites
16
resin
12
machinable
10
printed
9
voco gmbh
8
flexural strength
8
bifix cement
8
variolink cement
8

Similar Publications

Effect of Irrigation Solution Temperature on Bioceramic Sealer Bond Strength.

Med Sci Monit

January 2025

Department of Endodontics, Faculty of Dentistry, Dicle University, Diyarbakir, Turkey.

BACKGROUND Different temperature conditions can affect the efficiency of irrigation solutions and consequently the ability of canal sealers to bond to root canal walls. The aim of this endodontic study was to evaluate the effect of irrigation solutions at different temperatures on the bond strength of a bioceramic-based root canal sealer. MATERIAL AND METHODS Root canal preparations were completed through irrigation with the following solutions: Group 1 was irrigated with 5 ml NaOCl (sodium hypochlorite) +5 ml EDTA (Ethylenediamine tetra-acetic acid) (22°C); Group 2 was irrigated with 5 ml NaOCl +5 ml EDTA (37°C); Group 3 was irrigated with 5 ml NaOCl +5 ml GA (Glycolic acid) (22°C); Group 4 was irrigated with 5 ml NaOCl +5 ml GA (37°C), Group 5 was irrigated with 20 ml Dual Rinse® HEDP (Etidronate) - NaOCl mixture (22°C); and Group 6 was irrigated with 20 ml of Dual Rinse® HEDP mixture (37°C).

View Article and Find Full Text PDF

A comparative study of polydopamine vs. glass ionomer cement for adhesion mechanisms on enamel and dentin using SEM and shear bond strength evaluation.

Sci Rep

January 2025

Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 600077, India.

Polydopamine (PD), inspired by the wet adhesion mechanism of mussel foot proteins, has emerged as a promising adhesive material with wide-ranging applications. This study aimed to compare the adhesive properties of PD and Glass Ionomer Cement (GIC) on enamel and dentin substrates, evaluating PD's potential as an alternative adhesive in dental practice. A total of 120 human premolars were prepared, with 80 teeth allocated for Scanning Electron Microscopy (SEM) analysis and 40 teeth reserved for shear bond strength testing.

View Article and Find Full Text PDF

Effect of Application Mode and Aging on Microtensile Bond Strength of Universal Adhesives to Enamel of Primary Teeth.

Int J Paediatr Dent

January 2025

Department of Paediatric Dentistry, Medical Centre for Dentistry, University Medical Centre Giessen and Marburg GmbH (Campus Giessen), Justus-Liebig-University, Giessen, Germany.

Background: Limited reports are available regarding bonding of universal adhesives to primary teeth' enamel.

Aim: To evaluate the effect of application mode and aging on microtensile bond strength (μTBS) of universal adhesives to primary enamel.

Design: Ninety-six human primary molars were randomly assigned to three groups: SU: Scotchbond Universal (3M); CU: Clearfil Universal Bond Quick (Kuraray Noritake); iBU: iBond Universal (Heraeus Kulzer), then subdivided according to phosphoric acid etching time into three subgroups (SG): SG1: 0s; SG2: 15s; SG3: 30s.

View Article and Find Full Text PDF

Ingeniously regulating the conformational equilibrium and ESPT mechanism of HBT-DPI by solvent environment: A novel perspective.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Jilin Key Laboratory of Solid-State Laser Technology and Application, School of Physics, Changchun University of Science and Technology, Changchun 130022 China. Electronic address:

HBT-DPI was a single-molecule multi-conformational fluorescent material and had unique applications for hydrophobic/hydrophilic mapping on large-scale heterogeneous surfaces. In this paper, the different proton transfer processes and luminescence mechanisms of HBT-DPI in Dichloromethane (DCM, no hydrogen bond (HB) receptor) and N, N-Dimethylformamide (DMF, HB receptor) solvents were systematically studied. Using the quantum chemistry method, the stable structures of HBT-DPI in two solvents were determined based on the Boltzmann distribution.

View Article and Find Full Text PDF

Inserted-B atoms modulating electronic structure of Pt enhancing hydrogen evolution under Universal-pH.

J Colloid Interface Sci

January 2025

College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108 China. Electronic address:

The development of high-performance electrocatalysts for hydrogen evolution reaction (HER) in different pH conditionsis pivotal in producing green hydrogen, but remains challenging. Herein, we regulate the p-d orbitals hybridization between B and Pt for effective and durable HER at all pH ranges by controlling the inserted B atom. Consequently, the optimized B-doped Pt catalysts with 20 at.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!