Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Selective distribution of cerebral blood flow (CBF) to vital brain regions likely occurs during rapid severe hypotension caused by tachyarrhythmia but has not yet been demonstrated. In this study, we aimed to test the hypothesis that CBF is differentially preserved between brain regions depending on the degree of hypotension. In anesthetized rats, CBF was measured in the motor cortex (MC), medial prefrontal cortex, amygdala, thalamus, dorsal hypothalamus, hippocampus, ventral tegmental area, dorsolateral periaqueductal gray (dlPAG), and parabrachial nucleus (PB) by using laser-Doppler flowmetry. Ventricular pacing was performed for 30 s at 550-800 beats/min. The cerebrovascular CO response time and reactivity were evaluated during 5% CO exposure. During 1-4 s of ventricular pacing, mean arterial pressure (MAP) rapidly decreased, with minor changes in central venous and intracranial pressures. CBF was relatively well maintained in brain regions other than the MC (s ≤ 0.012) when moderate hypotension occurred (-34 mmHg ≤ ΔMAP ≤ -15 mmHg), whereas severe hypotension (-54 mmHg ≤ ΔMAP ≤ -35 mmHg) induced selective CBF distribution to regions other than the MC, thalamus, and dlPAG. The cerebrovascular CO response time/reactivity was rapid or high in the thalamus, dlPAG, and PB, which almost completely differed from the brain regions in which CBF was relatively maintained during pacing-induced severe hypotension. These results suggest that regional heterogeneity of CBF arises depending on the degree of tachyarrhythmia-induced hypotension. Clarifying the mechanisms and functions of CBF maintenance would be beneficial to syncope and cerebral ischemia management in patients with arrhythmia. When lethal tachyarrhythmia occurs, survival is prioritized by counterregulating the cardiovascular system, which is driven by vital brain regions. However, whether limited cerebral blood flow is selectively distributed to vital brain regions is unknown. We demonstrated the preferential maintenance of cerebral blood flow in vital brain regions, depending on the degree of hypotension caused by ventricular pacing, in anesthetized rats. Our data may have clinical implications for syncope and cerebral ischemia management in patients with arrhythmia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/japplphysiol.00436.2024 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!