AI Article Synopsis

  • Developing high-affinity monovalent ligands for lectins is difficult due to weak binding interactions, prompting research into covalent ligands for BC2L-C lectin, which is linked to severe respiratory infections in immunocompromised patients.
  • Antiadhesion therapy is gaining traction as a strategy against infections, particularly targeting bacterial lectins like BC2L-C-Nt, which recognizes specific blood group oligosaccharides in host cells.
  • Using computational methods, researchers created effective reversible covalent ligands that enhanced their binding affinity significantly, demonstrating the crucial role of specific ligand components in achieving this improved efficacy.

Article Abstract

High-affinity monovalent ligands for lectins are challenging to develop due to weak binding interactions. This study investigates the potential of rationally designed covalent ligands targeting the N-terminal domain of BC2L-C lectin from , a pathogen causing severe respiratory infections in immunocompromised patients. Antiadhesion therapy is emerging as a complementary approach against such infections, and bacterial lectins are suitable targets. The fucose-specific BC2L-C-Nt recognizes blood group oligosaccharides on host cells. Using a computational approach, we designed reversible covalent competitive ligands that include a fucoside anchor and a salicylaldehyde warhead targeting Lys108 near the fucose-binding site. Several candidates were synthesized and tested using competition experiments. The most effective ligand improved the IC of methyl-fucoside by 2 orders of magnitude, matching the affinity of the native H-type 1 trisaccharide. Control experiments confirmed the importance of both fucose anchor and salicylaldehyde moiety in the ligand's affinity. Mass analysis confirmed the covalent interaction with Lys108.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.4c01876DOI Listing

Publication Analysis

Top Keywords

reversible covalent
8
covalent ligands
8
anchor salicylaldehyde
8
achieving high
4
high affinity
4
affinity bacterial
4
bacterial lectin
4
lectin reversible
4
covalent
4
ligands
4

Similar Publications

Hepatitis B virus hijacks MRE11-RAD50-NBS1 complex to form its minichromosome.

PLoS Pathog

January 2025

State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, China.

Chronic hepatitis B virus (HBV) infection can significantly increase the incidence of cirrhosis and liver cancer, and there is no curative treatment. The persistence of HBV covalently closed circular DNA (cccDNA) is the major obstacle of antiviral treatments. cccDNA is formed through repairing viral partially double-stranded relaxed circular DNA (rcDNA) by varies host factors.

View Article and Find Full Text PDF

Background: UFMylation is an understudied ubiquitin-like post-translational modification (PTM). Like ubiquitin, UFM1 is conjugated to substrates via a catalytic cascade involving a UFM1-specific E1 (UBA5), E2 (UFC1), and an E3 ligase complex (UFL1, DDRGK1 and CDK5RAP3). UFMylation is reversible, and this is mediated by UFSP2.

View Article and Find Full Text PDF

Protein-RNA interactions play important biological roles and hence reactive RNA probes for cross-linking with proteins are important tools in their identification and study. To this end, we designed and synthesized 5'-O-triphosphates bearing a reactive squaramate group attached to position 5 of cytidine or position 7 of 7-deazaadenosine and used them as substrates for polymerase synthesis of modified RNA. In vitro transcription with T7 RNA polymerase or primer extension using TGK polymerase was used for synthesis of squaramate-modified RNA probes which underwent covalent bioconjugations with amine-linked fluorophore and lysine-containing peptides and proteins including several viral RNA polymerases or HIV reverse transcriptase.

View Article and Find Full Text PDF

Development of an Irreversible Peptidomimetic Radioligand for PET Imaging of ST14 Protease.

Bioconjug Chem

January 2025

Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 210000, China.

To enhance the affinity of peptide ligands for their targets, covalent warheads can be engineered to facilitate irreversible binding. This study aimed at exploring the potential of a Ga-labeled peptidomimetic radioligand, [Ga]Ga-DOTA-RQAR-kbt, for PET imaging through its irreversible binding to the suppression of tumorigenicity 14 (ST14). An Arg-Gln-Ala-Arg (RQAR) tetrapeptide was conjugated with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid for gallium-68 radiolabeling.

View Article and Find Full Text PDF

The synthesis of crystalline covalent organic frameworks (COFs) has in principle relied on reversible dynamic chemistry. A general method to synthesize irreversibly bonded COFs is urgently demanded for driving the COF chemistry to a new era. Here we report a universal two-step method for the straightforward synthesis of irreversibly amide-linked COF (AmCOF) membranes by autocatalytic interfacial polymerization (AIP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!