Reduced graphene quantum dots (r-GQD), graphene oxide quantum dots (GOQD), and carboxylated graphene quantum dots (C-GQD) are screened to promote tobacco growth and combat tobacco mosaic virus (TMV). First, a 21-day foliar exposure is employed to explore GQDs' impacts on N. benthamiana. Surface-defective GOQD and C-GQD are screened out to facilitate N. benthamiana uptake through leaf stomata, and to promote seedlings of differently leaf ages to various degrees at different concentrations after different durations of foliar exposure. Specially, compared to the ddHO treatment, GOQD/C-GQD at 400 mg L increase biomass by 44%/68%, increase chlorophyll content by 43%/54% and up-regulate the expression of growth-related genes NtLRX1, CycB, and NtPIP1 by more than two-fold. Second, different from the transient inhibition shown by r-GQD and the TMV enhancement shown by GOQD, C-GQD can directly inactivate TMV infection by inducing TMV aggregation and attachment outside TMV, significantly decreasing TMV replication and hindering TMV spread over 21-day. Specially, C-GQD decreases the transcript abundance of TMV RdRp and TMV CP to 0.11-fold and 0.29-fold, and down-regulates the host defensive response pathways. This work provides a comparative analysis of GQDs with different surface-functionalizations, highlighting C-GQD as a promising nanotechnology tool for promoting plant growth and inactivating phytovirus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202407289 | DOI Listing |
Biomed Phys Eng Express
January 2025
Xi'an Jiaotong University, No.28 Xianning West Road, Xi'an, Shaanxi 710049, P.R. China, Xi'an, 710049, CHINA.
The optimal method for three-dimensional thermal imaging within cells involves collecting intracellular temperature responses while simultaneously obtaining corresponding 3D positional information. Current temperature measurement techniques based on the photothermal properties of quantum dots face several limitations, including high cytotoxicity and low fluorescence quantum yields. These issues affect the normal metabolic processes of tumor cells.
View Article and Find Full Text PDFHeliyon
January 2025
Transmission Electronic Microscopy Laboratory, Electronic Microscopy Unit, Department of Biology, University of Cauca, Popayán, 190002, Colombia.
A green methodology for the synthesis of carbon quantum dots (CQDs) from coffee husk without the use of any toxic solvents is proposed in this work. Sonochemical exfoliation of biochar, obtained from the thermal carbonization of coffee husk (from a certified coffee seeds) at low temperature in an air-restricted atmosphere, is described as an alternative procedure for the sustainable production of CQDs. The synthesized CQDs exhibited blue fluorescence with a strong maximum emission band at 410 nm when excited at a maximum absorption wavelength of 330 nm.
View Article and Find Full Text PDFMethods Appl Fluoresc
January 2025
Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, Liaoning Province, China, Shenyang, 110004, CHINA.
Molybdenum disulfide quantum dots (MoS2 QDs) is a new type of graphite like nanomaterial, which exhibited well chemical stability, unique fluorescence characteristics, and excellent biocompatibility. The conventional hydrothermal synthesis of MoS2 generally requires a long-term reaction at high temperature and high pressure. Herein, we have developed a simple and fast MoS2 QDs synthesis scheme using microwave heating, and further modified the surface of MoS2 QDs using 3-aminophenylboronic acid.
View Article and Find Full Text PDFTalanta
January 2025
School of Agricultural Engineering, Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, Henan, 471003, China. Electronic address:
Searching for new alternative to tripropylamine (TPrA) with low toxicity and high chemical stability for the tris(4,4'-dicarboxylic acid-2,2'-bipyridyl)ruthenium (II) (Ru(dcbpy)) based coreactant electrochemiluminescence (ECL) system is essential for widespread analytical applications. Here, nitrogen-doped graphene quantum dots (NGQDs) have been discovered to significantly amplify the ECL emission and increase the ECL efficiency of Ru(dcbpy) for the first time. However, the mechanism by which NGQDs act as coreactants is not well comprehended.
View Article and Find Full Text PDFNanotechnology
January 2025
Radiophysics, Tomsk State University, Lenin, 36, Tomsk, Tomsk region, 634050, RUSSIAN FEDERATION.
Structural and photoelectric properties of p-i-n photodiodes based on GeSiSn/Si multiple quantum dots both on Si and silicon-on-insulator (SOI) substrates were investigated. Elastic strained state of grown films was demonstrated by x-ray diffractometry. Annealing of p-i-n structures before the mesa fabrication can improve the ideality factor of current-voltage characteristics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!