Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The development of catalysts that are optically transparent, electrically charge-transferable, and capable of protecting underlying photoactive semiconductors is crucial for efficient photoelectrochemical (PEC) hydrogen production. However, meeting all these requirements simultaneously poses significant challenges. In this study, the fabrication of a wafer-scale transparent bilayer MoS/WS catalyst is presented with a staggered heterojunction, optimized for photon absorption, extraction of photogenerated charge carriers, and surface passivation of p-Si photocathode. The MoS and WS monolayers are grown via metal-organic chemical vapor deposition, followed by sequential transfer and stacking onto the p-Si photocathode. The resulting type-II heterojunction film establishes a strong built-in electric field for rapid charge carrier transport and effectively protects the Si surface from oxidation and corrosion. The fabricated MoS/WS/p-Si photocathode demonstrates outstanding PEC performance, achieving a high photocurrent density of -25 mA cm at 0 V versus reversible hydrogen electrode, along with enhanced stability compared to monolayer MoS/p-Si. This work provides promising strategies for developing optically transparent, electrically active, and protective catalysts for practical PEC energy conversion systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202407650 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!