Surface Defects Control Bulk Carrier Densities in Polycrystalline Pb-Halide Perovskites.

Adv Mater

Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, 08544, USA.

Published: December 2024

The (opto)electronic behavior of semiconductors depends on their (quasi-)free electronic carrier densities. These are regulated by semiconductor doping, i.e., controlled "electronic contamination". For metal halide perovskites (HaPs), the functional materials in several device types, which already challenge some of the understanding of semiconductor properties, this study shows that doping type, density and properties derived from these, are to a first approximation controlled via their surfaces. This effect, relevant to all semiconductors, and already found for some, is very evident for lead (Pb)-HaPs because of their intrinsically low electrically active bulk and surface defect densities. Volume carrier densities for most polycrystalline Pb-HaP films (<1 µm grain diameter) are below those resulting from even < 0.1% of surface sites being electrically active defects. This implies and is consistent with interfacial defects controlling HaP devices in multi-layered structures with most of the action at the two HaP interfaces. Surface and interface passivation effects on bulk electrical properties are relevant to all semiconductors and are crucial for developing those used today. However, because bulk dopant introduction in HaPs at controlled ppm levels for electronic-relevant carrier densities is so difficult, passivation effects are vastly more critical and dominate, to first approximation, their optoelectronic characteristics in devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11636199PMC
http://dx.doi.org/10.1002/adma.202407098DOI Listing

Publication Analysis

Top Keywords

carrier densities
12
densities polycrystalline
8
surface defects
4
defects control
4
control bulk
4
bulk carrier
4
densities
4
polycrystalline pb-halide
4
pb-halide perovskites
4
perovskites optoelectronic
4

Similar Publications

Rural Environment as a Risk Factor for the Age at Onset of Machado-Joseph Disease.

Mov Disord Clin Pract

January 2025

Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.

Background: Machado-Joseph disease (SCA3/MJD) is a neurodegenerative condition caused by a dominant expansion of a CAG repeat (CAGexp). Most of the variability in the age at onset of symptoms (AO) remains unexplained, and environmental influences were scarcely studied.

Objective: The objective was to test if AO of SCA3/MJD carriers can be associated with markers of the rural environment, such as demographic density (DeD), proportion of rural population (PRP), and the consumption of untreated well water (CWW).

View Article and Find Full Text PDF

Loading cocatalysts on semiconductor-based photocatalysts to create active reaction sites is a preferable method to enhance photocatalytic activity and a widely adopted strategy to achieve effective photocatalytic applications. Although theoretical calculations suggest that the broad density of states of noble metal cocatalysts, such as Pt, act as a recombination center, this has never been experimentally demonstrated. Herein, we employed pico-nano and nano-micro second transient absorption spectroscopy to investigate the often overlooked photogenerated holes, instead of the widely studied electrons on Pt- and Ni-loaded SrTiO to evaluate the effects of cocatalysts as a recombination center.

View Article and Find Full Text PDF

In bioelectrochemical systems (BES), biofilm formation and architecture are of crucial importance, especially for flow-through applications. The interface between electroactive microorganisms and the electrode surface plays an important and often limiting role, as the available surface area influences current generation, especially for poor biofilm forming organisms. To overcome the limitation of the available electrode surface, nanoparticles (NPs) with a magnetic iron core and a conductive, hydrophobic carbon shell were used as building blocks to form conductive, magnetic micropillars on the anode surface.

View Article and Find Full Text PDF

Efficient and safe carriers of genetic material are crucial for advancing gene therapy. Three new series of cationic dendritic nanocarriers based on a carbosilane scaffold, differentiated by peripheral modifications: saccharide (CS-glyco), amine (CS-N), and phosphonium dendrimers (CS-P) were designed for binding, protecting, and releasing polyanionic compounds like therapeutic siRNA. Besides introducing synthetic methodology, this study brings a unique direct interstructural comparison of 16 dendritic nanovector's characteristics, addressing a gap in typical research that focuses on uniform structural types.

View Article and Find Full Text PDF

Traditional natural polysaccharide-based hydrogels, when used as drug carriers, often struggle to maintain long-term stability in the extremely harsh gastric environment. This results in unstable drug release and significant challenges in bioavailability. To address this issue, this study utilized inexpensive and safe natural polysaccharides-chitosan (CS) and high methoxyl pectin (HM)-as raw materials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!