Wearable devices equipped with high-performance flexible sensors that can identify diverse physical information free from batteries are playing an indispensable role in various fields. However, previous studies on flexible sensors have primarily focused on their elasticity and temperature-sensing capability, with few reports on material identification. In this paper, a thermogalvanic dual-network hydrogel is fabricated with [Fe(CN)] as a redox couple and lithium magnesium silicate, Gdm and lithium bromide as key electrolytes to optimize the interconnected porous structure of the gel, which shows excellent mechanical and thermoelectric properties with a thermopower as high as 4.01 mV K. A self-powered material identification ring is developed based on the temperature-triggered thermoelectric response of the gel in conjunction with machine learning, which can actively infer materials without an external power connection by analyzing the voltage signals correlated with interfacial heat transfer produced upon contact with different materials. The proposed gel ring has important applications for future areas such as human-computer interaction and haptic-associated artificial intelligence.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202405911DOI Listing

Publication Analysis

Top Keywords

material identification
12
thermogalvanic dual-network
8
dual-network hydrogel
8
flexible sensors
8
self-powered machine-learning-assisted
4
machine-learning-assisted material
4
identification enabled
4
enabled thermogalvanic
4
hydrogel high
4
high thermopower
4

Similar Publications

The cortical high-flow sign in oligodendroglioma, IDH-mutant and 1p/19q-codeleted is correlated with histological cortical vascular density.

Neuroradiology

January 2025

Department of Molecular Imaging and Diagnosis, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.

Background And Purpose: The cortical high-flow sign has been more commonly reported in oligodendroglioma, IDH-mutant and 1p/19q-codeleted (ODG IDHm-codel) compared to diffuse glioma with IDH-wildtype or astrocytoma, IDH-mutant. Besides tumor types, higher grades of glioma might also contribute to the cortical high flow. Therefore, we investigated whether the histological cortical vascular density or CNS WHO grade was associated with the cortical high-flow sign in patients with ODG IDHm-codel.

View Article and Find Full Text PDF

Application of predictive modeling tools for the identification of Ocimum spp. herbal products.

Anal Bioanal Chem

January 2025

Intercollege Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, PA, USA.

Species identification of botanical products is a crucial aspect of research and regulatory compliance; however, botanical classification can be difficult, especially for morphologically similar species with overlapping genetic and metabolomic markers, like those in the genus Ocimum. Untargeted LC-MS metabolomics coupled with multivariate predictive modeling provides a potential avenue for improving herbal identity investigations, but the current dearth of reference materials for many botanicals limits the applicability of these approaches. This study investigated the potential of using greenhouse-grown authentic Ocimum to build predictive models for classifying commercially available Ocimum products.

View Article and Find Full Text PDF

Semiconductor metal oxide (SMO) gas sensors are gaining prominence owing to their high sensitivity, rapid response, and cost-effectiveness. These sensors detect changes in resistance resulting from oxidation-reduction reactions with target gases, responding to a variety of gases simultaneously. However, their inherent limitations lie in selectivity.

View Article and Find Full Text PDF

Amino acids are fundamental building blocks of proteins, playing critical roles in medical diagnostics, environmental monitoring, and biomarker identification. The development of nanoscale electronic sensors capable of single-amino-acid recognition has gained significant attention due to their potential for label-free, real-time detection. In this study, we investigate the electronic transport properties of amino acids in two gold-based nanodevices with distinct architectures: a gold nanojunction and a gold-capacitor system.

View Article and Find Full Text PDF

Protein -glycosylation, as one of the most crucial post-translational modifications, plays a significant role in various biological processes. The structural alterations of -glycans are closely associated with the onset and progression of numerous diseases. Therefore, the precise and specific identification of disease-related -glycans in complex biological samples is invaluable for understanding their involvement in physiological and pathological processes, as well as for discovering clinical diagnostic biomarkers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!