Saffron, similar to numerous other agricultural commodities, is susceptible to microbial contamination during cultivation and postharvest handling. Cold plasma treatment has emerged as an effective method for microbial inactivation while preserving food quality. The aim of this research was to preserve the color integrity and minimize the presence of microorganisms in dried saffron stigma by implementing cold plasma pre-treatment. Process parameters were optimized using the response surface method (RSM), considering the type of atmosphere (argon and air), plasma exposure time (1, 5, and 10 min), and plasma power (40, 70, and 100 W) as independent variables. The objectives were to maximize crocin content and minimize the total microbial load. The analysis of the response surface revealed that the argon atmosphere had a more significant impact on reducing microbial contamination than air, and an increase in plasma exposure time led to a decrease in microbial load. The maximum reduction in microbial load, by 0.9 logarithmic cycles compared to the control, was achieved with a 10-min treatment at 40 W power. Extended plasma exposure durations led to a minor reduction in the color, taste, aroma, and antioxidant properties of saffron stigma. Specifically, the color, taste, and aroma decreased by 0.5%, 0.5%, and 0.08%, respectively, with longer plasma exposure times. The antioxidant activity decreased by 0.64% with prolonged exposure time. However, the plasma-treated samples did not show any signs of , mold, or yeast. Furthermore, our findings demonstrated that the type of atmosphere significantly influenced the reduction of infection and maintenance of saffron stigma's color quality. Cold plasma pretreatment holds promise as a viable method for preserving the physicochemical attributes of saffron while effectively reducing microbial contamination.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11521636PMC
http://dx.doi.org/10.1002/fsn3.4252DOI Listing

Publication Analysis

Top Keywords

cold plasma
16
plasma exposure
16
saffron stigma
12
microbial contamination
12
exposure time
12
microbial load
12
plasma
9
plasma pretreatment
8
response surface
8
type atmosphere
8

Similar Publications

Roadmap for Borophene Gas Sensors.

ACS Sens

January 2025

Chimie des Interactions Plasma Surface group, Chemistry Department, Université de Mons, 7000 Mons, Belgium.

Borophene, a two-dimensional allotrope of boron, has emerged as a promising material for gas sensing because of its exceptional electronic properties and high surface reactivity. This review comprehensively overviews borophene synthesis methods, properties, and sensing applications. However, it is crucial to acknowledge the substantial gap between the abundance of theoretical literature and the limited experimental studies.

View Article and Find Full Text PDF

Enhancing drying characteristics and quality of fruits and vegetables using biochemical drying improvers: A comprehensive review.

Compr Rev Food Sci Food Saf

January 2025

Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China.

Traditional drying is a highly energy-intensive process, accounting for approximately 15% of total manufacturing cost, it often resulting in reduced product quality due to low drying efficiency. Biological and chemical agents, referred to as biochemical drying improvers, are employed as pretreatments to enhance both drying characteristics and quality attributes of fruits and vegetables. This article provides a thorough examination of various biochemical drying improvers (including enzymes, microorganisms, edible film coatings, ethanol, organic acids, hyperosmotic solutions, ethyl oleate alkaline solutions, sulfites, cold plasma, carbon dioxide, ozone, inorganic alkaline agents, and inorganic salts) and their effects on improving the drying processes of fruits and vegetables.

View Article and Find Full Text PDF

Effect of cold plasma and ultrasonic pretreatment on drying characteristics and nutritional quality of vacuum freeze-dried kiwifruit crisps.

Ultrason Sonochem

December 2024

School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China; Key Laboratory for Agriculture Products Processing of Anhui Province, Hefei, Anhui, China.

The effect of ultrasound and plasma pretreatment on freeze-dried kiwifruit crisps was investigated in this study. Using unpretreated kiwifruit as a control group (CG), the effects of ultrasound (US), plasma-activated water (PAW), ultrasound combined with plasma-activated water (UPAW), plasma-jet (PJ), and ultrasound combined with plasma-jet (UPJ) on the quality of vacuum freeze-dried kiwifruit were investigated. The results showed that all the pretreatments could change the microstructure of the crisps.

View Article and Find Full Text PDF

Development and application of decontamination methods for the re-use of laboratory grade plastic pipette tips.

PLoS One

December 2024

Division of Biology, Chemistry, and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration (FDA), Silver Spring, MD, United States of America.

During the SARS-CoV-2 pandemic, a need for methods to decontaminate and reuse personal protective equipment (PPE) and medical plastics became a priority. In this investigation we aimed to develop a contamination evaluation protocol for laboratory pipette tips, after decontamination. Decontamination methods tested in this study included cleaning with a common laboratory detergent (2.

View Article and Find Full Text PDF

This study aimed to increase the concentrations of vindoline (VDL) and catharanthine (CAT) in Catharanthus roseus plants cultivated in an indoor farming system using artificial lighting and plasma-activated water (PAW). After a 61-days pre-treatment period under fluorescent lamps, plants were exposed to four treatments: white light (W) from the same fluorescent lamps, red light (R) from LEDs, W with PAW, and R with PAW. These combinations were evaluated at two sampling times: 45 days (T1) and 70 days (T2) after the end of pre-treatment (DAP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!