AI Article Synopsis

  • The text discusses the importance of certain proteins in regulating CXCR4, which is crucial for B-cell movement and function in the germinal center.
  • It highlights that the absence of specific genes can lead to abnormal B-cell development, increased mutation rates, and a high risk of developing aggressive B-cell cancers in mice.
  • Additionally, the study suggests that these gene deficiencies create a model that mimics human aggressive B-cell lymphomas, offering insights into the mechanisms behind these blood cancers.

Article Abstract

and encode proteins that control the stability and cellular trafficking of CXCR4, a master regulator of hematopoiesis whose dynamic regulation is required for appropriate trafficking of B-cells in the germinal center (GC). Here, we report that and -deficient B-cells accumulate in the GC and show transcriptional abnormalities, affecting the mechanisms controlling expression and exposing them to excessive somatic hypermutation. Consequently, about 30% of mice transplanted with -deficient hematopoietic stem and progenitor cells developed a biologically aggressive and fatal B-cell hyperproliferative disease by 20-50 weeks posttransplant. Histological and molecular profiling reveal that and deficient neoplasms morphologically resemble human high-grade B-cell lymphomas of germinal center origin with shared morphologic features of both Burkitt Lymphoma (BL) and diffuse large B-cell lymphoma (DLBCL), and molecular features consistent with DLBCL, as well as elevated mutational burden and heterogenous transcriptional and mutational signature. Thus, reduced and gene expression perturbs B-cell maturation and increases the risk of B-cell neoplasms of germinal center origin. As this model recapitulates the essential features of the heterogenous group of human hematopoietic malignancies, it could be a powerful tool to interrogate the mechanisms of lymphomagenesis for these cancers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522827PMC
http://dx.doi.org/10.1002/hem3.70037DOI Listing

Publication Analysis

Top Keywords

germinal center
12
center origin
8
b-cell
6
gprasp protein
4
protein deficiency
4
deficiency triggers
4
triggers lymphoproliferative
4
lymphoproliferative disease
4
disease b-cell
4
b-cell differentiation
4

Similar Publications

Oogenesis involves a novel nuclear envelop remodeling mechanism in Schmidtea mediterranea.

Dev Biol

December 2024

Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA; Howard Hughes Medical Institute, Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA. Electronic address:

The cell nuclei of Ophisthokonts, the eukaryotic supergroup defined by fungi and metazoans, is remarkable in the constancy of their double-membraned structure in both somatic and germ cells. Such remarkable structural conservation underscores common and ancient evolutionary origins. Yet, the dynamics of disassembly and reassembly displayed by Ophisthokont nuclei vary extensively.

View Article and Find Full Text PDF

Background: Genetically immunodeficient mice lacking Il2rg and Rag2 genes have been widely utilized in the field of biomedical research. However, immunodeficient rats, which offer the advantage of larger size, have not been as extensively used to date. Recently, Severe Combined Immunodeficiency (SCID) rats were generated using CRISPR/Cas9 system, targeting Il2rg and Rag2 in National BioResource Project in Japan.

View Article and Find Full Text PDF

Prognostic value of interim PET/CT in GCB and non-GCB DLBCL: comparison of the Deauville five-point scale and the ΔSUVmax method.

BMC Cancer

December 2024

Department of Nuclear Medicine, School of Medicine, Shanghai General Hospital, Shanghai JiaoTong University, Shanghai, 200080, China.

Background: This study aimed to identify the prognostic value of interim F-FDG PET/CT (I-PET) for germinal center B-cell-like (GCB) and non-GCB diffuse large B-cell lymphoma (DLBCL), respectively.

Methods: Baseline F-FDG PET/CT (B-PET) and I-PET scans were performed in 112 patients with DLBCL. The prognostic value of I-PET using the Deauville five-point scale (D-5PS) criteria or percentage decrease in SUVmax (∆SUVmax) for GCB and non-GCB DLBCL were evaluated.

View Article and Find Full Text PDF

Periodic mesoporous organicsilica-loaded mincle agonists enhance the immunogenicity of COVID-19 subunit vaccines by dual activation of B cells and dendritic cells.

Acta Biomater

December 2024

National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China. Electronic address:

Effective vaccination is crucial for intervening in the COVID-19 pandemic. However, with the continuous mutation of the SARS-CoV-2, existing vaccines including subunit vaccines cannot effectively prevent virus infections. Hence, there is an urgent need to enhance the immunogenicity of existing vaccines to induce a more potent and durable immune response.

View Article and Find Full Text PDF

Clinical Potential of Misshapen/NIKs-Related Kinase (MINK) 1-A Many-Sided Element of Cell Physiology and Pathology.

Curr Issues Mol Biol

December 2024

Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland.

Misshapen/NIKs-related kinase (MINK) 1 belongs to the mammalian germinal center kinase (GCK) family. It contains the N-terminal, conserved kinase domain, a coiled-coil region, a proline-rich region, and a GCK, C-terminal domain with the Citron-NIK-Homology (CNH) domain. The kinase is an essential component of cellular signaling pathways, which include Wnt signaling, JNK signaling, pathways engaging Ras proteins, the Hippo pathway, and STRIPAK complexes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!