The rapidly increasing growth in the world's population has created enormous environmental issues, such as the greenhouse effect, global warming, ozone layer depletion, acid rain, and excessive energy usage. The construction sector, in particular, accounts for a significant share of worldwide energy consumption, making it a major contributor to these challenges. Effective building insulation is crucial for decreasing energy demand, minimising heat loss, and lowering environmental impact. Aerogels have acquired popularity as insulation materials due to their outstanding qualities such as great thermal insulation, flame retardancy, lightweight construction, and environmental friendliness. Silica aerogels, in particular, are emerging as game changers in the construction insulation sector, accounting for a sizable proportion due to their low thermal conductivity and simplicity of manufacture. This paper gives a thorough overview of silica aerogel production processes, the key qualities necessary for aerogel-based composites, and the most recent advances in their use in building insulation. It also examines how to overcome inherent obstacles such as mechanical fragility and high manufacturing costs, providing technologies that improve mechanical strength and long-term durability. By incorporating silica aerogels into construction materials, the industry may significantly reduce energy consumption while also contributing to the creation of sustainable, energy-efficient buildings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11521048 | PMC |
http://dx.doi.org/10.1039/d4ra04976d | DOI Listing |
Gels
December 2024
School of Resource and Safety Engineering, Central South University, Changsha 410083, China.
This research enhances the thermal safety of hydrophobic silica aerogel (HSA) by integrating layered double oxides (LDOs). XRD and FTIR confirm that the introduction of LDOs does not affect the formation of SA. The LDO/SA composites demonstrate a low density (0.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, PR China. Electronic address:
Reducing carbon dioxide (CO) levels in the atmosphere is crucial for combating global warming. One effective strategy involves using porous materials for the combined processes of CO capture and catalytic conversion. In this study, we developed composite aerogel materials using cellulose nanocrystals (CNCs) as templates, doped with cerium oxide, to enhance CO capture and conversion.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania.
Iron oxide nanoparticles were synthesized using a vortex microfluidic system and subsequently functionalized with a primary shell of salicylic acid, recognized for its ability to increase the stability and biocompatibility of coated materials. In the second stage, the vortex platform was placed in a magnetic field to facilitate the growth and development of a porous silica shell. The selected drug for this study was micafungin, an antifungal agent well regarded for its effectiveness in combating fungal infections and identified as a priority compound by the World Health Organization (WHO).
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Key Laboratory of Multifunctional and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
Personal thermal protection is crucial in extreme temperature environments, and the rising global temperatures present significant challenges in managing heat stress for individuals. Phase-change materials (PCMs) can absorb or release heat during phase transition to maintain a constant temperature, thus making them ideal innovative thermal protection materials. However, it is currently a bottleneck issue for using PCMs in wearable thermal protection systems due to a balance between the mechanical properties, latent heat, temperature resistance, and rapid response on demand.
View Article and Find Full Text PDFChemSusChem
December 2024
UESTC: University of Electronic Science and Technology of China, Institute of Fundamental and Frontier Sciences, Jianshe Road, Chengdu, CHINA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!