Introduction Dopamine serves an essential function as a neurotransmitter, influencing the regulation of movement, cognitive processes, and emotional states. The identification of abnormal dopamine levels is critical for clinical diagnoses and scientific research, given its links to various disorders, including depression, schizophrenia, and Parkinson's disease. The distinctive electrochemical characteristics, stability, and broad bandgap of zinc sulfide (ZnS) nanostructures render them particularly fascinating. The hydrothermal method is recognized as an effective and economical approach for the fabrication of ZnS nanostructures, exhibiting a range of morphologies. Utilizing this method to create ZnS nanostructures leads to the formation of structures characterized by extensive surface areas, hierarchical designs, and improved electrochemical properties. Aim The objective is to examine the electrochemical characteristics of ZnS starfish-shaped nanostructures produced through the hydrothermal technique and to assess their viability as a sensing platform for dopamine detection. Materials and methods To synthesize ZnS nanoflowers, stoichiometric amounts of transition metal salts were prepared: 10 mM of Zn(NO)•3HO and 30 mM of sodium thiosulfate (NaSO•5HO) were dissolved in 30 mL of deionized water and stirred for 20 minutes. The solutions were then combined and transferred into a 100 mL Teflon autoclave reactor, which was heated at 200 °C for 12 hours in a furnace. This process utilized the hydrothermal technique to produce the desired ZnS nanoflowers. Result The crystalline arrangement of ZnS was validated by X-ray diffraction (XRD) analysis, aligning with the Joint Committee on Powder Diffraction Standards (JCPDS). Moreover, field emission scanning electron microscopy (FE-SEM) illustrated the particle morphology of ZnS, showing a range between 200 and 500 nm size. Additionally, the cyclic voltammetry results indicated that the modified electrode produced a greater current response than the bare electrode, highlighting its improved sensitivity to dopamine molecules. Conclusion ZnS nanoparticles were synthesized via a hydrothermal method and characterized using XRD and FE-SEM. These nanoparticles were used for electrochemical dopamine detection, showing potential for advanced sensing platforms. Integrating ZnS into microfluidic devices enables real-time dopamine monitoring, opening new possibilities for healthcare and neurochemical research. Exploring surface engineering techniques could further enhance the electrochemical performance of ZnS-based sensors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11524609 | PMC |
http://dx.doi.org/10.7759/cureus.70481 | DOI Listing |
Biosensors (Basel)
December 2024
Department of Electrical-Electronics Engineering, Abdullah Gul University, Kayseri 38039, Türkiye.
detection suffers from slow analysis time and high costs, along with the need for specificity. While state-of-the-art electrochemical biosensors are cost-efficient and easy to implement, their sensitivity and analysis time still require improvement. In this work, we present a paper-based electrochemical biosensor utilizing magnetic core-shell FeO@CdSe/ZnS quantum dots (MQDs) to achieve fast detection, low cost, and high sensitivity.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Center of Nanoscience, Nanotechnology, and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Brazil. Electronic address:
Regrettably, glioblastoma multiforme (GBM) remains the deadliest form of brain cancer, where the early diagnosis plays a pivotal role in the patient's therapy and prognosis. Hence, we report for the first time the design, synthesis, and characterization of new hybrid organic-inorganic stimuli-responsive nanoplexes (NPX) for bioimaging and killing brain cancer cells (GBM, U-87). These nanoplexes were built through coupling two nanoconjugates, produced using a facile, sustainable, green aqueous colloidal process ("bottom-up").
View Article and Find Full Text PDFBackground: Ciprofloxacin is a widely used antibiotic in medicine and agriculture. It can cause pollution to the environment and food, thereby affecting human health.
Objective: This study proposes the preparation of molecular imprinted fluorescent sensors and their selective detection of ciprofloxacin, with the aim of achieving specific recognition and accurate detection of ciprofloxacin.
Small
December 2024
Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, 315211, P. R. China.
In the realm of photodetector (PD) technology, photoelectrochemical (PEC) PDs have garnered attention owing to their inherent advantages. Advances in this field depend on functional nanostructured materials, which are pivotal in improving the separation and transport of photogenerated electron-hole pairs to improve device efficiency. Herein, a highly photosensitive PEC UV PD is built using integrated self-supporting SiC/ZnS heterojunction nanowire array photoelectrodes through anodization and chemical deposition.
View Article and Find Full Text PDFJ Mater Chem B
December 2024
Biomedical Institute for Multimorbidity, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!