Global climate change and agricultural practices have increased atmospheric nitrogen (N) deposition, significantly affecting the nitrogen cycling process in grasslands. The impact of different N forms on key soil enzyme activities involved in N nitrification, particularly in the saline-alkali grasslands of the Hexi Corridor, using natural grassland as a control (CK) and adding three N treatments: inorganic N (IN), organic N (ON) and a mixed N treatment (MN, with a 4:6 ratio of organic to inorganic N). Our study assessed the effects of these N forms on soil properties and enzyme activities crucial for N cycling. The findings indicate that different N forms significantly enhance soil mineral N content, with ON treatment leading to the highest increases in nitrate and ammonium content 92.44% and 35.6%, respectively, compared to CK. Both IN and ON treatments significantly boosted soil nitrate reductase and urease activities ( < 0.05), while MN treatment decreased nitrate reductase activity, with ON treatment showing the greatest sensitivity to enzyme activity changes. Soil pH slightly increased with N addition, but soil nitrite reductase activity remained relatively unchanged (0.372-0.385 mg g). Correlation analysis revealed that soil mineral N content and pH are key regulators of enzyme activities in saline-alkaline grasslands. These results suggest that different N forms should be considered in nutrient cycling models, with organic N addition potentially enhancing soil N conversion and mitigating nutrient limitations in grassland ecosystems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522360PMC
http://dx.doi.org/10.1002/ece3.70501DOI Listing

Publication Analysis

Top Keywords

enzyme activities
12
forms soil
8
soil enzyme
8
soil
5
effects nitrogen
4
forms
4
nitrogen forms
4
activities
4
activities saline-alkaline
4
saline-alkaline grassland
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!