Hydrogen (H) as a fuel source presents a promising route toward decarbonization, though challenges in its storage remain significant. This study explores the synthesis and characterization of polytriphenylamine (PTPA) conjugated microporous polymers (CMPs) for H storage. Utilizing a combination of Buchwald-Hartwig (BH) coupling, the Bristol-Xi'an Jiaotong (BXJ) approach, and variations in monomer reactive site stoichiometry, a polymer with specific surface areas in excess of 1150 m g and micropore volume of 0.47 cm g is developed. H storage capacities are measured, achieving excess gravimetric uptakes of 1.65 wt.% at 1 bar and 2.51 wt.% at 50 bar and 77 K, with total capacities reaching 4.40 wt.% at 100 bar and 77 K. Net adsorption isotherms reveal advantages to H storage using PTPA adsorbents over traditional compression up to pressures of 10 bar at 77 K. High mass transfer coefficients of 4.95 min indicate a strong material affinity for H. This study highlights the impact of monomer ratio adjustments on the porosity and excess, total, and net H adsorption capacities of PTPA-based CMPs, offering insights into the importance of a non-stoichiometric monomer concentration when developing efficient CMP-based H storage materials.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202407292DOI Listing

Publication Analysis

Top Keywords

microporous polymers
8
net adsorption
8
storage
6
polytriphenylamine conjugated
4
conjugated microporous
4
polymers versatile
4
versatile platforms
4
platforms tunable
4
tunable hydrogen
4
hydrogen storage
4

Similar Publications

Polyimide (PI)-based gas separation membranes are of great interest in the field of H purification owing to their good thermal stability, chemical stability, and mechanical properties. Among polyimide-based membranes, intrinsically microporous polyimides are easily soluble in common organic solvents, showing great potential for fabricating hollow fiber gas separation membranes. However, based on the solution-diffusion model, improving the free volume or the movability of polymer chains can improve gas permeability, but would result in poor thermal stability.

View Article and Find Full Text PDF

Fiber Sorbents - A Versatile Platform for Sorption-Based Gas Separations.

Acc Mater Res

January 2025

School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30322, United States.

Increasing demand for high-purity fine chemicals and a drive for process intensification of large-scale separations have driven significant work on the development of highly engineered porous materials with promise for sorption-based separations. While sorptive separations in porous materials offer energy-efficient alternatives to longstanding thermal-based methods, the particulate nature of many of these sorbents has sometimes limited their large-scale deployment in high-throughput applications such as gas separations, for which the necessary high feed flow rates and gas velocities accrue prohibitive operational costs. These processability limitations have been historically addressed through powder shaping methods aimed at the fabrication of structured sorbent contactors based on pellets, beads or monoliths, commonly obtained as extrudates.

View Article and Find Full Text PDF

Graphene, a two-dimensional material featuring densely packed sp-hybridized carbon atoms arranged in a honeycomb lattice, has revolutionized material science. Laser-induced graphene (LIG) represents a breakthrough method for producing graphene from both commercial and natural precursors via direct laser writing, offering advantages such as simplicity, efficiency, and cost-effectiveness. This study demonstrates a novel approach to synthesize a composite material exclusively from a porous organic polymer (POP) by direct femtosecond laser writing on a compressed imide-linked porous organic polymer substrate.

View Article and Find Full Text PDF

Polymers of intrinsic microporosity (PIMs) are an emerging class of amorphous organic porous materials with solution processability, which are widely used in a multitude of fields such as gas separation, ion conduction, nanofiltration, etc. PIMs have adjustable pore structure and functional pore wall, so it can achieve selective sieving for specific substances. In order to meet the functional requirements of PIMs, two principal methods are used to synthesize functional PIMs, namely, post-modification of PIMs precursors and functionalization of monomers.

View Article and Find Full Text PDF

Influence of Monomer Size on CO Adsorption and Mechanical Properties in Microporous Cyanate Ester Resins.

Polymers (Basel)

January 2025

Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan.

Molecular simulations offer valuable insights into thermosetting polymers' microstructures and interactions with small molecules, aiding in the development of advanced materials. In this study, we design two cyanate resin models featuring monomers of different sizes and employ a previously developed method to generate crosslinked structures. We then analyze their crosslinking processes and physicochemical properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!