The research aims to elucidate how drug interactions affect the activity of L-asparaginase (L-ASNase), an essential enzyme in cancer treatment, especially for acute lymphoblastic leukemia (ALL). Understanding these interactions is crucial for optimizing treatment effectiveness and reducing adverse effects. This study explores the intricate molecular interactions and structural dynamics of L-ASNase upon binding with colchicine. Fluorescence quenching experiments were conducted at various temperatures (298, 303, and 310 K), revealing notable interactions between L-ASNase and colchicine. These interactions were characterized by a reduction in fluorescence intensity and a blue shift in emission maxima. Additional analyses, including the determination of Stern-Volmer quenching constants (K), bimolecular quenching rate constants (k), and thermodynamic parameters, indicated a static quenching mechanism with moderate binding affinities (K: 1.40-2.71 × 10 M) across different temperatures. Thermodynamic study suggested positive enthalpy and entropy changes (ΔH° = -10.26 kcal mol; ΔS° = -14.19 cal mol K), suggesting a spontaneous reaction with negative ΔG° values (-5.86 to -6.03 kcal mol). FRET measurements supported optimal distances (r and R) for FRET occurrence, reinforcing the static quenching mechanism. Molecular docking further supported these findings, revealing a 1:1 stoichiometric binding ratio for L-ASNase:colchicine and elucidating specific binding orientations and interactions critical for complex stability. Subsequent molecular dynamics simulations spanning 100 ns underscored the stability of the L-ASNase-colchicine complex, with minimal deviations observed in key structural parameters such as RMSD, RMSF, R, and SASA. Additionally, spectroscopic analyses, including circular dichroism (CD), synchronous fluorescence, and 3D fluorescence provided insights into the conformational changes and alterations in the microenvironment of aromatic amino acid residues in L-ASNase upon colchicine binding. Moreover, L-ASNase activity was slightly reduced by 25% in the presence of colchicine. This comprehensive investigation sheds light on the molecular intricacies of the L-ASNase-colchicine complex, advancing our understanding of drug-target interactions and offering potential avenues for therapeutic applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bio.70000 | DOI Listing |
Cancers (Basel)
December 2024
Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Jacksonville, FL 32224, USA.
The treatment of Philadelphia chromosome-positive B-cell acute lymphoblastic leukemia (Ph+ B-cell ALL) has seen substantial progress over the past two decades. The introduction of tyrosine kinase inhibitor (TKIs) has resulted in dramatic improvements in long-term survival. Allogeneic hematopoietic stem cell transplantation (allo-HSCT), with its curative potential, has always been an integral part of the treatment algorithm of Ph+ ALL.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Centro de Investigación Biomédica en Red de Cáncer, CIBERONC CB16/12/00284, Instituto de Salud Carlos III, 28029 Madrid, Spain.
Recent studies have demonstrated the association between constitutional ring chromosome 21 (r(21)c) and the development of B-cell acute lymphoblastic leukemia (B-ALL) with intrachromosomal amplification of chromosome 21 (iAMP21). iAMP21 acts as a driver which is often accompanied by secondary alterations that influence disease progression. Here, we report an atypical case of iAMP21 B-ALL with a unique molecular profile in the context of r(21)c.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
School of Medicine and Surgery, University of Milan-Bicocca, 20126 Milan, Italy.
Genetic studies of haematological cancers have pointed out the heterogeneity of leukaemia in its different subpopulations, with distinct mutations and characteristics, impacting the treatment response. Next-generation sequencing (NGS) and genome-wide analyses, as well as single-cell technologies, have offered unprecedented insights into the clonal heterogeneity within the same tumour. A key component of this heterogeneity that remains unexplored is the intracellular metabolome, a dynamic network that determines cell functions, signalling, epigenome regulation, immunity and inflammation.
View Article and Find Full Text PDFExp Hematol
January 2025
Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden. Electronic address:
T-cell acute lymphoblastic leukemia (T-ALL), which constitutes of 10-15% of all pediatric ALL cases, is known for its complex pathology due to pervasive genetic and chromosomal abnormalities. Although most children are successfully cured, chromosomal rearrangements involving the KMT2A gene is considered a poor prognostic factor. In a cohort of 171 pediatric T-ALL samples we have studied differences in gene and splice variant patterns in KMT2A rearranged (KMT2A-r) T-ALL compared to KMT2A negative (KMT2A-wt) T-ALL samples.
View Article and Find Full Text PDFJ Pediatr Hematol Oncol
January 2025
Division of Pediatric Hematology, Oncology, and Stem Cell Transplantation, Department of Pediatrics, New York Medical College.
Purpose: Lumbar puncture is a frequently performed procedure for patients undergoing treatment for acute lymphoblastic leukemia. This brief procedure is frequently performed with sedation in young patients but with only local anesthesia in adults. Adolescent and young adult patients may be cared for by physicians with different training backgrounds and sedation preferences, making the utilization of sedation for lumbar punctures variable among providers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!