Scalable ultrastrong MXene films with superior osteogenesis.

Nature

School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing, People's Republic of China.

Published: October 2024

Titanium carbide MXene flakes have promising applications in aerospace, flexible electronic devices and biomedicine owing to their superior mechanical properties and electrical conductivity and good photothermal conversion, biocompatibility and osteoinductivity. It is highly desired yet very challenging to assemble MXene flakes into macroscopic high-performance materials in a scalable manner. Here we demonstrate a scalable strategy to fabricate high-performance MXene films by roll-to-roll-assisted blade coating (RBC) integrated with sequential bridging, providing good photothermal conversion and osteogenesis efficiency under near-infrared irradiation. MXene flakes were first bridged with silk sericin by hydrogen bonding and then assembled into macroscopic films using a continuous RBC process, followed by ionic bridging to freeze their aligned structure. The resultant large-scale MXene films with strong interlayer interactions are highly aligned and densified, exhibiting high tensile strength (755 MPa), toughness (17.4 MJ m) and electromagnetic interference (EMI) shielding capacity (78,000 dB cm g), as well as good ambient stability, photothermal conversion and bone regeneration performance. The proposed strategy not only paves a feasible way for realizing the practical applications of MXene in the fields of flexible EMI shielding materials and bone tissue engineering but also provides an avenue for the high-performance and scalable assembly of other two-dimensional flakes.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-024-08067-8DOI Listing

Publication Analysis

Top Keywords

mxene films
12
mxene flakes
12
photothermal conversion
12
good photothermal
8
emi shielding
8
mxene
7
scalable
4
scalable ultrastrong
4
ultrastrong mxene
4
films
4

Similar Publications

MXene is widely used in the electromagnetic interference (EMI) shielding field. However, the high electromagnetic reflectivity of pure MXene causes potential secondary EMI pollution. This study presents a hollow egg-box structure used in MXene composite film, by which the reflectivity (R) could decrease from 0.

View Article and Find Full Text PDF

TiCT MXene Thin Films and Intercalated Species Characterized by IR-to-UV Broadband Ellipsometry.

J Phys Chem C Nanomater Interfaces

January 2025

Nanoscale Solid-Liquid Interfaces, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Schwarzschildstraße 8, 12489 Berlin, Germany.

MXenes are two-dimensional (2D) materials with versatile applications in optoelectronics, batteries, and catalysis. To unlock their full potential, it is crucial to characterize MXene interfaces and intercalated species in more detail than is currently possible with conventional optical spectroscopies. Here, we combine ultra-broadband ellipsometry and transmission spectroscopy from the mid-infrared (IR) to the deep-ultraviolet (UV) to probe quantitatively the composition, structure, transport, and optical properties of spray-coated TiCT MXene thin films with varying material properties.

View Article and Find Full Text PDF

Layer-by-layer thin films of TiC MXene and gold nanoparticles as an ideal SERS platform.

Phys Chem Chem Phys

January 2025

Department of Chemical Engineering, Ataturk University, 25240 Erzurum, Turkey.

The combination of plasmonic metals and MXene, as a new and interesting member of the 2D material class, may provide unique advantages in terms of low cost, versatility, flexibility, and improved activity as an ideal surface-enhanced Raman spectroscopy (SERS) platform. Despite the recent progress, the present studies on the utilization of plasmonic metal/MXene-based SERS systems are quite limited and thereby benefits of the extraordinary properties of this combination cannot be realized. In this study, for the first time, we propose layer-by-layer (LbL) thin films of TiC MXene and gold nanoparticles (AuNPs) as a robust SERS platform (TiC/AuNPs).

View Article and Find Full Text PDF

Recyclable PVA/starch/TiCT MXene nanocomposite films with superior mechanical and barrier properties.

Int J Biol Macromol

January 2025

School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom. Electronic address:

The fabrication of eco-friendly and high-performance composite materials has gained significant attention for multifunctional applications. Polyvinyl alcohol (PVA)/starch composite films containing varying amounts of TiCT MXene (2.5-10 wt%) were produced using a simple casting method.

View Article and Find Full Text PDF

TiCT MXene Composite with Much Improved Stability for Superior Humidity Sensors.

Langmuir

January 2025

Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P.R. China.

MXenes have attracted tremendous attention in electromagnetic interference shielding, energy storage, and gas and humidity detections because of their ultralarge surface area and abundant functional groups. However, their poor stability against hydration and oxidation makes them challenging for long-term storage and applications. Herein, we proposed and demonstrated a TiCT MXene composite-based humidity sensor, of which the stability is pronouncedly enhanced by introducing an O adsorption competitor of extracted bentonite (EB).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!