Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Sepiolite-modified nano-zero-valent iron (S-nZVI) is used as an amendment and incubated to remediate As-Cd-contaminated soil under three different soil‒water management conditions [moderately wet (MW), continuously flooded (CF) and alternately wet and dry (AWD)]. The results showed that soil pH is in the order of CF > AWD > MW. The soil pH increased approximately 0.5 to 1 unit by 3% and 5% doses after 36 d of incubation. Soil pH was negatively correlated with available As-Cd content under the three water regimes (p < 0.01). All doses of S-nZVI significantly reduced soil available As-Cd under the three soil moistures by 45-80% for As and 5-45% for Cd. Moreover, S-nZVI addition also promoted the transformation of As-Cd in the acid-extracted fraction, oxidation fraction, and reduced fraction to a more stable residue fraction. High-throughput sequencing results showed that high doses of S-nZVI had a significant adverse effect on soil bacterial diversity and richness. After 36 d of incubation, the Chao1 index and the Shannon index were significantly decreased in MW, CF, and AWD, respectively. Decreasing the S-nZVI dose and increasing the incubation time simultaneously reduced As-Cd availability and S-nZVI ecotoxicity in the soil, thereby effectively maintaining the survivability of the original dominant bacteria, increasing the soil pH, and promoting the interaction between dominant bacteria and soil factors in As-Cd cocontaminated soil.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11525559 | PMC |
http://dx.doi.org/10.1038/s41598-024-77066-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!