AI Article Synopsis

  • * A total of 4872 features were extracted from various MRI sequences, and LASSO regression helped reduce these features to 176 for model building. Five different machine learning algorithms were tested, with CatBoost performing the best based on various performance metrics.
  • * The results indicate that this radiomics-based approach could allow for non-invasive, pre-operative grading of meningiomas, but more testing on larger datasets is needed to confirm these findings.

Article Abstract

This study aims to develop and evaluate radiomics-based machine learning (ML) models for predicting meningioma grades using multiparametric magnetic resonance imaging (MRI). The study utilized the BraTS-MEN dataset's training split, including 698 patients (524 with grade 1 and 174 with grade 2-3 meningiomas). We extracted 4872 radiomic features from T1, T1 with contrast, T2, and FLAIR MRI sequences using PyRadiomics. LASSO regression reduced features to 176. The data was split into training (60%), validation (20%), and test (20%) sets. Five ML algorithms (TabPFN, XGBoost, LightGBM, CatBoost, and Random Forest) were employed to build models differentiating low-grade (grade 1) from high-grade (grade 2-3) meningiomas. Hyperparameter tuning was performed using Optuna, optimizing model-specific parameters and feature selection. The CatBoost model demonstrated the best performance, achieving an area under the receiver operating characteristic curve (AUROC) of 0.838 [95% confidence interval (CI): 0.689-0.935], precision of 0.492 (95% CI: 0.371-0.623), recall of 0.838 (95% CI: 0.689-0.935), F1 score of 0.620 (95% CI: 0.495-0.722), accuracy of 0.729 (95% CI: 0.650-0.800), an area under the precision-recall curve (AUPRC) of 0.620 (95% CI: 0.433-0.753), and Brier score of 0.156 (95% CI: 0.122-0.200). Other models showed comparable performance, with mean AUROCs ranging from 0.752 to 0.784. The radiomics-based ML approach presented in this study showcases the potential for non-invasive and pre-operative grading of meningiomas using multiparametric MRI. Further validation on larger and independent datasets is necessary to establish the robustness and generalizability of these findings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11525589PMC
http://dx.doi.org/10.1038/s41598-024-78311-8DOI Listing

Publication Analysis

Top Keywords

machine learning
8
grade 2-3
8
2-3 meningiomas
8
0620 95%
8
95%
6
large scale
4
scale multi
4
multi institutional
4
study
4
institutional study
4

Similar Publications

Motivation: Understanding the associations between traits and microbial composition is a fundamental objective in microbiome research. Recently, researchers have turned to machine learning (ML) models to achieve this goal with promising results. However, the effectiveness of advanced ML models is often limited by the unique characteristics of microbiome data, which are typically high-dimensional, compositional, and imbalanced.

View Article and Find Full Text PDF

Transformative change is needed across the food system to improve health and environmental outcomes. As food, nutrition, environmental and health data are generated beyond human scale, there is an opportunity for technological tools to support multifactorial, integrated, scalable approaches to address the complexities of dietary behaviour change. Responsible technology could act as a mechanistic conduit between research, policy, industry and society, enabling timely, informed decision making and action by all stakeholders across the food system.

View Article and Find Full Text PDF

Developing a decision support tool to predict delayed discharge from hospitals using machine learning.

BMC Health Serv Res

January 2025

Department of Industrial Engineering, Dalhousie University, PO Box 15000, Halifax, B3H 4R2, NS, Canada.

Background: The growing demand for healthcare services challenges patient flow management in health systems. Alternative Level of Care (ALC) patients who no longer need acute care yet face discharge barriers contribute to prolonged stays and hospital overcrowding. Predicting these patients at admission allows for better resource planning, reducing bottlenecks, and improving flow.

View Article and Find Full Text PDF

Purpose: The study aimed to develop a deep learning model for rapid, automated measurement of full-spine X-rays in adolescents with Adolescent Idiopathic Scoliosis (AIS). A significant challenge in this field is the time-consuming nature of manual measurements and the inter-individual variability in these measurements. To address these challenges, we utilized RTMpose deep learning technology to automate the process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!