A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Restoration of X-ray phase-contrast imaging based on generative adversarial networks. | LitMetric

For light-element materials, X-ray phase contrast imaging provides better contrast compared to absorption imaging. While the Fourier transform method has a shorter imaging time, it typically results in lower image quality; in contrast, the phase-shifting method offers higher image quality but is more time-consuming and involves a higher radiation dose. To rapidly reconstruct low-dose X-ray phase contrast images, this study developed a model based on Generative Adversarial Networks (GAN), incorporating custom layers and self-attention mechanisms to recover high-quality phase contrast images. We generated a simulated dataset using Kaggle's X-ray data to train the GAN, and in simulated experiments, we achieved significant improvements in Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM). To further validate our method, we applied it to fringe images acquired from three phase contrast systems: a single-grating phase contrast system, a Talbot-Lau system, and a cascaded grating system. The current results demonstrate that our method successfully restored high-quality phase contrast images from fringe images collected in experimental settings, though it should be noted that these results were achieved using relatively simple sample configurations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11525792PMC
http://dx.doi.org/10.1038/s41598-024-77937-yDOI Listing

Publication Analysis

Top Keywords

phase contrast
24
contrast images
12
based generative
8
generative adversarial
8
adversarial networks
8
x-ray phase
8
contrast
8
image quality
8
high-quality phase
8
fringe images
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!