AI Article Synopsis

Article Abstract

Reproducibility of Al/AlO/Al Josephson junctions is a challenge for scaling up superconducting quantum processors. The frequency uncertainty of the transmon qubits arising from the fabrication process is attributed to deviations in the Josephson junction microstructure and electrical properties. Here, we present a solution for this problem using the post-fabrication Josephson junction thermal annealing process. The developed thermal post-exposure method allows not only to increase the junction resistance by 175%, but also to decrease by 60% with a step of 10% in R, which opens up new possibilities for tuning the frequency of qubits. The resistance is shown to be strongly temperature dependent, and is weakly dependent on the holding time. The linear dimensions of the electrodes and the sidewalls contribution to the total JJ area also have a significant impact on the final resistance after annealing. Finally, a theoretical model of the structure modification in a tunnel barrier with changes in oxygen concentration gradient is proposed. The proposed thermal annealing approach can be used to form stable and reproducible tunnel barriers and scalable frequency trimming for widely used fixed-frequency transmon qubits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11525475PMC
http://dx.doi.org/10.1038/s41598-024-74071-7DOI Listing

Publication Analysis

Top Keywords

josephson junction
12
thermal annealing
12
junction microstructure
8
microstructure electrical
8
electrical properties
8
transmon qubits
8
aluminum josephson
4
junction
4
properties modified
4
thermal
4

Similar Publications

The combination of an ordinary s-type superconductor with three-dimensional topological insulators creates a promising platform for fault-tolerant topological quantum computing circuits based on Majorana braiding. The backbone of the braiding mechanism are three-terminal Josephson junctions. It is crucial to understand the transport in these devices for further use in quantum computing applications.

View Article and Find Full Text PDF

High-impedance microwave resonators with two-photon nonlinear effects.

Nat Commun

January 2025

NanoLund and Solid State Physics, Lund University, Box 118, 22100, Lund, Sweden.

Nonlinear effects play a central role in photonics as they form the foundation for most of the device functionalities such as amplification and quantum state preparation and detection. Typically the nonlinear effects are weak and emerge only at high photon numbers with strong drive. Here we present an experimental study of a Josephson junction -based high-impedance resonator.

View Article and Find Full Text PDF

Macroscopic coherence in quantum fluids allows the observation of interference effects in their wavefunctions, and enables applications such as superconducting quantum interference devices based on Josephson tunneling. The Josephson effect manifests in both fermionic and bosonic systems, and has been well studied in superfluid helium and atomic Bose-Einstein condensates. In exciton-polariton condensates-that offer a path to integrated semiconductor platforms-creating weak links in ring geometries has so far remained challenging.

View Article and Find Full Text PDF

Josephson diode effect in one-dimensional quantum wires connected to superconductors with mixed singlet-triplet pairing.

J Phys Condens Matter

January 2025

School of Physics, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad 500046, India.

The Josephson diode effect (JDE), characterized by asymmetric critical currents in a Josephson junction, has drawn considerable attention in the field of condensed matter physics. We investigate the conditions under which JDE can manifest in a one-dimensional Josephson junction composed of a spin-orbit-coupled quantum wire with an applied Zeeman field, connected between two superconductors (SCs). Our study reveals that while spin-orbit coupling (SOC) and a Zeeman field in the quantum wire are not sufficient to induce JDE when the SCs are purely singlet, introduction of triplet pairing in the SCs leads to the emergence of JDE.

View Article and Find Full Text PDF

Pseudotunnel Magnetoresistance in Twisted van der Waals FeGeTe Homojunctions.

Adv Mater

January 2025

Faculty of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara, Kanagawa, 252-5258, Japan.

Twistronics, a novel engineering approach involving the alignment of van der Waals (vdW) integrated two-dimensional materials at specific angles, has recently attracted significant attention. Novel nontrivial phenomena have been demonstrated in twisted vdW junctions (the so-called magic angle), such as unconventional superconductivity, topological phases, and magnetism. However, there have been only few reports on integrated vdW layers with large twist angles θ, such as twisted interfacial Josephson junctions using high-temperature superconductors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!