A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Innovative synthesis of nano-magnetic bio-organocatalysts from red mud waste for green polyhydroquinoline derivatives synthesis. | LitMetric

The imperative of transforming waste materials into valuable nanomaterials via ecological recycling has emerged as a pivotal avenue for environmental stewardship. This research contributes to the "greening" of global chemical processes by introducing a magnetic biocatalyst derived from red mud waste. Emphasizing the use of glutamic acid as the second most effective step in obtaining a green catalyst is a key focus of this work. Leveraging cost-effective materials such as FeSO, amino acid, and FeO isolated from red mud enhances the economic viability of the synthesized catalyst. Characterization of the newly developed nano-magnetic bio-organocatalysts was conducted using advanced spectroscopic techniques, including Fourier transform infrared (FT-IR), X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), field emission scanning electron microscopy (FE-SEM), Brunauer-Emmett-Teller (BET), energy-dispersive X-ray spectroscopy (EDX), mapping, thermogravimetric analysis (TGA), and vibrating-sample magnetometers (VSM). The catalytic activity of FeO@SiO@(CH)@Gl was examined in the one-pot synthesis of polyhydroquinolines, showcasing short reaction times, high efficiency, ease of catalyst separation, and the potential for catalyst recycling as salient features of this work. This study pioneers the utilization of red mud waste for eco-friendly nanomaterial synthesis and underscores the economic and environmental significance of incorporating glutamic acid as a crucial element in the catalyst synthesis process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11525998PMC
http://dx.doi.org/10.1038/s41598-024-74292-wDOI Listing

Publication Analysis

Top Keywords

red mud
16
mud waste
12
nano-magnetic bio-organocatalysts
8
glutamic acid
8
electron microscopy
8
catalyst
5
innovative synthesis
4
synthesis nano-magnetic
4
red
4
bio-organocatalysts red
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!