The goal of the current study was to learn about the role of cerebral mitochondrial function on cognition. Based on established cognitive neuroscience, clinical neuropsychology, and cognitive aging literature, we hypothesized mitochondrial function within a focal brain region would map onto cognitive behaviors linked to that brain region. To test this hypothesis, we used phosphorous (P) magnetic resonance spectroscopy (MRS) to derive indirect markers of mitochondrial function and energy metabolism across two regions of the brain (bifrontal, left temporal). We administered cognitive tasks sensitive to frontal-executive or temporal-hippocampal systems to a sample of 70 cognitively unimpaired older adults with subjective memory complaints and a first-degree family history of Alzheimer's disease and predicted better executive function and recent memory performance would be related to greater frontal and temporal P MRS indirect markers, respectively. Results of separate hierarchical linear regressions indicated better recent memory scores were related to P MRS indirect markers of lower static energy and higher energy reserve within the left temporal voxel; these findings were associated with moderate effect sizes. Contrary to predictions, executive function performance was unrelated to P MRS indirect markers within the bilateral frontal voxel, which may reflect a combination of theoretical and/or methodological issues. Findings represent a snapshot of the relationship between cognition and P MRS indirect markers of mitochondrial function, providing potential avenues for future work investigating mitochondrial underpinnings of cognition. P MRS may provide a sensitive neuroimaging marker for differences in aspects of memory among persons at-risk for mild cognitive impairment or dementia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11357-024-01403-w | DOI Listing |
Metab Brain Dis
January 2025
Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA.
Neuroinflammation and mitochondrial dysfunction are early events in Alzheimer's disease (AD) and contribute to neurodegeneration and cognitive impairment. Evidence suggests that the inflammatory axis mediated by macrophage migration inhibitory factor (MIF) binding to its receptor, CD74, plays an important role in many central nervous system (CNS) disorders such as AD. Our group has developed DRhQ, a novel CD74 binding construct which competitively inhibits MIF binding, blocks macrophage activation and migration into the CNS, enhances anti-inflammatory microglia cell numbers and reduces pro-inflammatory gene expression.
View Article and Find Full Text PDFPhysiol Res
December 2024
Institute of Physiology, Biomedical Centre, Charles University, Faculty of Medicine in Plzen, Plzen, Czech Republic.
Mitochondria represent pivotal cellular organelles endowed with multifaceted functionalities encompassing cellular respiration, metabolic processes, calcium turnover, and the regulation of apoptosis, primarily through the generation of reactive oxygen species (ROS). Perturbations in mitochondrial dynamics have been intricately linked to the etiology of numerous cardiovascular pathologies, such as heart failure, ischemic heart disease, and various cardiomyopathies. Notably, recent attention has been directed towards the detrimental impact of micro- and nanoplastic pollution on mitochondrial integrity, an area underscored by a paucity of comprehensive investigations.
View Article and Find Full Text PDFGenes Cells
January 2025
Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
Tumor development often requires cellular adaptation to a unique, high metabolic state; however, the molecular mechanisms that drive such metabolic changes in TFE3-rearranged renal cell carcinoma (TFE3-RCC) remain poorly understood. TFE3-RCC, a rare subtype of RCC, is defined by the formation of chimeric proteins involving the transcription factor TFE3. In this study, we analyzed cell lines and genetically engineered mice, demonstrating that the expression of the chimeric protein PRCC-TFE3 induced a hypoxia-related signature by transcriptionally upregulating HIF1α and HIF2α.
View Article and Find Full Text PDFJ Cell Physiol
January 2025
Department of Pharmaceutical Sciences and Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA.
Glucose is a major source of energy for the brain. At the blood-brain barrier (BBB), glucose uptake is facilitated by glucose transporter 1 (GLUT1). GLUT1 Deficiency Syndrome (GLUT1DS), a haploinsufficiency affecting SLC2A1, reduces glucose brain uptake.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
IBiTech - BioMMedA Group, Ghent University, Corneel Heymanslaan 10, Entrance 98, 9000 Gent, Belgium.
Molecular oxygen (O) is essential for life, and continuous effort has been made to understand its pathways in cellular respiration with all-atom (AA) molecular dynamics (MD) simulations of, e.g., membrane permeation or binding to proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!