The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway within the innate immune system plays a crucial role in defending insects against bacterial, fungal, and viral pathogens. In this study, we identified and cloned five key genes of this signaling pathway in Myzus persicae: MpDome-1, MpDome-2, MpJak, MpStat92E-1, and MpStat92E-2. Our results illustrated that these genes were highly expressed in first, second and third-instar nymphs. Tissue-specific expression analysis revealed that the five genes were predominantly expressed in the gut. Upon bacterial challenge, particularly with Staphylococcus aureus, the expression levels of all five genes were significantly upregulated. Additionally, Escherichia coli infection significantly upregulated the expression levels of MpDome-1 and MpDome-2, while MpJak, MpStat92E-1 and MpStat92E-2 were weakly upregulated. Functional analysis through RNA interference-mediated knockdown of these target genes revealed a significant increase in mortality following infection with E. coli and S. aureus compared with the control group. These findings suggest that the JAK/STAT signaling pathway is crucial for immune defense against bacterial infections in M. persicae.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pestbp.2024.106168 | DOI Listing |
Anim Cells Syst (Seoul)
December 2024
School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea.
Tissue growth is controlled by various signaling pathways, such as the insulin/IGF-signaling (IIS) pathway. Although IIS activation is regulated by a complex regulatory network, the mechanism underlying miRNA-based regulation of the IIS pathway in wing development remains unclear. In this study, we found that the wing size of adult flies was negatively affected by miR-263b expression.
View Article and Find Full Text PDFCytotechnology
February 2025
Division of Neurobiology, Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat India.
Tumor necrosis factor alpha (TNF-α) is a well-known pro-inflammatory cytokine originally recognized for its ability to induce apoptosis and cell death. However, recent research has revealed that TNF-α also plays a crucial role as a mediator of cell survival, influencing a wide range of cellular functions. The signaling of TNF-α is mediated through two distinct receptors, TNFR1 and TNFR2, which trigger various intracellular pathways, including NF-κB, JNK, and caspase signaling cascades.
View Article and Find Full Text PDFRegen Biomater
November 2024
Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China.
Chronic diabetic wounds present significant treatment challenges due to their complex microenvironment, often leading to suboptimal healing outcomes. Hydrogen sulfide (HS), a crucial gaseous signaling molecule, has shown great potential in modulating inflammation, oxidative stress and extracellular matrix remodeling, which are essential for effective wound healing. However, conventional HS delivery systems lack the adaptability required to meet the dynamic demands of different healing stages, thereby limiting their therapeutic efficacy.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Nephrology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China.
Chronic kidney disease (CKD) is a global public health issue, with vascular calcification (VC) being a common and deadly complication. Despite its prevalence, the underlying mechanisms of VC remain unclear. In this study, we aimed to investigate whether and how Otubain-2 (OTUB2) contributes to VC.
View Article and Find Full Text PDFTheranostics
January 2025
Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
Radiofrequency ablation (RFA), as a minimally invasive surgery strategy based on local thermal-killing effect, is widely used in the clinical treatment of multiple solid tumors. Nevertheless, RFA cannot achieve the complete elimination of tumor lesions with larger burden or proximity to blood vessels. Incomplete RFA (iRFA) has even been validated to promote residual tumor growth due to the suppressive tumor immune microenvironment (TIME).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!