The role of neuropeptide prothoracicotropic hormone (PTTH) - Torso in pyriproxyfen-induced larval-pupal abnormal metamorphosis in silkworms.

Pestic Biochem Physiol

College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China; Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China. Electronic address:

Published: November 2024

AI Article Synopsis

  • - The neuropeptide prothoracicotropic hormone (PTTH) regulates ecdysone synthesis critical for insect metamorphosis, while pyriproxyfen, a juvenile hormone analogue, disrupts this process in silkworms.
  • - RNA-seq analysis revealed 3,774 differentially expressed genes in the prothoracic gland after pyriproxyfen exposure, primarily affecting the MAPK signaling pathway linked to PTTH.
  • - Increased PTTH levels were observed, but downstream signaling genes (like torso and ERK) were down-regulated, indicating that pyriproxyfen interferes with metamorphosis by impairing PTTH-Torso signaling.

Article Abstract

The neuropeptide prothoracicotropic hormone (PTTH) plays a key role in regulating ecdysone synthesis and promoting insect metamorphosis. Pyriproxyfen is a juvenile hormone analogue. We previously reported that pyriproxyfen disrupts ecdysone secretion and inhibits larval-pupal metamorphosis in silkworms. However, the specific molecular mechanisms by which pyriproxyfen interferes with ecdysone signaling remain to be elucidated. Herein, the RNA-seq analysis on the ecdysone-secretion organ prothoracic gland (PG) was conducted following pyriproxyfen exposure. A total of 3774 differentially expressed genes (DEGs) were identified, with 1667 up-regulated and 2107 down-regulated. KEGG analysis showed that DEGs were enriched in the MAPK signaling pathway, a conserved pathway activated by PTTH binding to Torso, which regulates the ecdysone synthesis. qRT-PCR results indicated a significant up-regulation in PTTH transcription level, while the transcription levels of torso and downstream MAPK pathway genes, Ras2, Raf and ERK, were down-regulated 24 h post-pyriproxyfen treatment. Consistent with these transcriptional changes, PTTH titers in the brain also increased following pyriproxyfen treatment. These results suggest that pyriproxyfen induces abnormal metamorphosis in silkworms by impairing PTTH-Torso signaling. This study enhances our understanding of the molecular mechanisms of pyriproxyfen-induced larval-pupal abnormal metamorphosis in silkworms, and also provides insights for developing detoxification strategies for juvenile hormone analog pesticides to non-target organisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pestbp.2024.106139DOI Listing

Publication Analysis

Top Keywords

metamorphosis silkworms
16
abnormal metamorphosis
12
neuropeptide prothoracicotropic
8
prothoracicotropic hormone
8
hormone ptth
8
pyriproxyfen-induced larval-pupal
8
larval-pupal abnormal
8
ecdysone synthesis
8
juvenile hormone
8
molecular mechanisms
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!