AI Article Synopsis

  • Arsenic is a toxic substance that can severely damage the liver in both humans and animals, often entering the food chain through arsenic-based pesticides.
  • This study explores how arsenic trioxide (ATO) exposure in chickens affects liver cells by triggering the cGAS-STING signaling pathway, leading to inflammation and immune responses.
  • Findings show that mitochondrial DNA leaks into the cytoplasm during ATO exposure, activating various inflammatory markers and signaling pathways that indicate a significant link between arsenic toxicity and immune reactions in chickens.

Article Abstract

Arsenic is a toxic element that can cause severe liver damage in humans and animals. Arsenic-based inorganic pesticides, such as lead arsenate, copper arsenate, and calcium arsenate, are widely used for insect control and can eventually affect human health through accumulation in the food chain. However, the relationship between arsenic trioxide (ATO)-induced hepatotoxicity and the cGAS-STING signaling pathway has not been reported. The aim of this study was to investigate the potential role of inflammatory response in ATO-induced hepatotoxicity in chickens. In this study, we found that ATO exposure resulted in mtDNA leakage into the cytoplasm of chicken hepatocytes, which activated the cGAS-STING pathway and significantly increased the cGAS, STING, TBK1, and IRF7 mRNA and protein expression levels. Moreover, type I interferon response was activated. Concurrently, STING triggered the activation of the traditional NF-κB signaling pathway and promoted the expression of pro-inflammatory cytokine genes, including TNF-α, IL-6, and IL-1β. Subsequently, we found that both mtDNA clearance with EtBr and inhibition of the cGAS-STING pathway with H-151 reversed the ATO-induced innate immune and inflammatory responses. In summary, the above findings indicate that chicken hepatocytes can induce innate immune responses and inflammatory responses via mtDNA-cGAS-STING under ATO-exposure conditions, which is of great significance for further studies on the toxicity mechanism of ATO.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pestbp.2024.106129DOI Listing

Publication Analysis

Top Keywords

inflammatory responses
12
chicken hepatocytes
12
cgas-sting signaling
8
ato-induced hepatotoxicity
8
signaling pathway
8
cgas-sting pathway
8
innate immune
8
arsenic-induced mtdna
4
mtdna release
4
release promotes
4

Similar Publications

Background: As an opportunistic bacterial pathogen, Klebsiella pneumoniae (KP) is prone to causing a spectrum of diseases in rabbits when their immune system is compromised, which poses a threat to rabbit breeding industry. Bacillus coagulans (BC), recognized as an effective probiotic, confers a variety of benefits including anti-inflammatory and antioxidant properties.

Aim: The purpose of this study was to investigate whether dietary BC can effectively alleviate hepatic injury caused by KP.

View Article and Find Full Text PDF

HCAR2 Modulates the Crosstalk between Mammary Epithelial Cells and Macrophages to Mitigate Staphylococcus aureus Infection in the Mouse Mammary Gland.

Adv Sci (Weinh)

January 2025

State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, China.

Staphylococcus aureus (S. aureus) is a major zoonotic pathogen, with mammary gland infections contributing to mastitis, a condition that poses significant health risks to lactating women and adversely affects the dairy industry. Therefore, understanding the immune mechanisms underlying mammary infections caused by S.

View Article and Find Full Text PDF

Small molecules as nanomedicine carriers offer advantages in drug loading and preparation. Selecting effective small molecules for stable nanomedicines is challenging. This study used artificial intelligence (AI) to screen drug combinations for self-assembling nanomedicines, employing physiochemical parameters to predict formation via machine learning.

View Article and Find Full Text PDF

A hallmark of chronic and inflammatory diseases is the formation of a fibrotic and stiff extracellular matrix (ECM), typically associated with abnormal, leaky microvascular capillaries. Mechanisms explaining how the microvasculature responds to ECM alterations remain unknown. Here, we used a microphysiological model of capillaries on a chip mimicking the characteristics of healthy or fibrotic collagen to test the hypothesis that perivascular cells mediate the response of vascular capillaries to mechanical and structural changes in the human ECM.

View Article and Find Full Text PDF

The infiltration and excessive polarization of M1 macrophages contribute to the induction and persistence of low-grade inflammation in joint-related degenerative diseases such as osteoarthritis (OA). The lipid metabolism dysregulation promotes M1 macrophage polarization by coordinating the compensatory pathways of the inflammatory and oxidative stress responses. Here, a self-assembling, licofelone-loaded nanoparticle (termed LCF-CSBN), comprising chondroitin sulfate and bilirubin joined by an ethylenediamine linker, is developed to selectively reprogram lipid metabolism in macrophage activation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!