A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Design the fusion double-strand RNAs to control two global sap-sucking pests. | LitMetric

Design the fusion double-strand RNAs to control two global sap-sucking pests.

Pestic Biochem Physiol

Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China. Electronic address:

Published: November 2024

RNA interference (RNAi) is an effective pest management strategy through silencing the crucial genes in target organisms. However, the effectiveness of targeting a single gene is often limited by the silencing efficiency due to tissue or developmental stage-specific gene expression. Moreover, multiple pests often infest the same crop simultaneously under current ecological conditions. Therefore, a combined strategy of "targeting multiple genes" and "controlling multiple pests" is expected to yield better management results. In this study, homologous genes from two globally sap-sucking pests, the peach aphid (Myzus persicae) and the whitefly (Bemisia tabaci), were screened on a genome-wide scale. Subsequently, RNAi bioassays showed silencing the genes (MpAbd-A, MpH3, MpRpL27a, and MpScr) exhibited high mortalities in both species, which were further selected for designing fusion dsRNAs. These fusion dsRNAs resulted in higher mortalities in both pests than single gene silencing and posed a minimal off-target risk to the predator ladybeetle (Propylaea japonica) based on the sequence analysis. Finally, the tobacco plants expressing the fusion dsRNAs through virus-induced gene silencing (VIGS) technology enhanced the resistance to both pests. In conclusion, this study proposes a novel RNAi-based approach for managing two sap-sucking pests simultaneously.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pestbp.2024.106114DOI Listing

Publication Analysis

Top Keywords

sap-sucking pests
12
fusion dsrnas
12
single gene
8
gene silencing
8
pests
6
silencing
5
design fusion
4
fusion double-strand
4
double-strand rnas
4
rnas control
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!