Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Obesity, a factor increasing the risk of metabolic diseases such as type 2 diabetes, dyslipidemia, and hypertension, can be reduced by the intake of soy isoflavones. In this study, we investigated whether skeletal muscle PGC1α, a transcriptional activator known to promote a variety of exercise-related metabolic processes, is involved in the anti-obesity effects of soy isoflavones using skeletal muscle-specific PGC1α knockout mice. The results showed that the intake of soy isoflavones reduced white adipose tissue weight and increased expression of energy metabolism-related genes such as mitochondrial function, lipolysis, and fatty acid oxidation in skeletal muscle. However, these effects were not observed in skeletal muscle-specific PGC1α knockout mice. In C2C12 myoblasts with overexpressing PGC1α, soy isoflavone treatment increased energy-metabolism related genes. Therefore, PGC1α of skeletal muscle is likely to be involved in the anti-obesity effects of soy isoflavones.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3177/jnsv.70.434 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!