Acidic isoferritins have been previously found to be highly potent inhibitors of hematopoietic progenitors at concentrations of 10(-16) to 10(-18) mol/L, and it has been suggested that acidic isoferritin inhibitory activity plays a role in the regulation of normal hematopoiesis and also in the pathogenesis of leukemia. To characterize the ferritin species that affect the in vitro growth of human colony-forming unit-granulocyte-macrophage (CFU-GM), we tested different preparations of basic (L-subunit-rich) and acidic (H-subunit-rich) isoferritins. Three preparations of human liver (basic) ferritin did not show any effects on CFU-GM growth at concentrations up to 10(-9) mol/L, irrespective of the degree of glycosylation. Acidic isoferritins were purified both from HeLa cells and human heart. HeLa cell ferritin did not affect in vitro colony formation. One of two preparations of human heart ferritin, containing 5% glycosylated ferritin, showed a mean inhibition of 26% +/- 8% of the control at 10(-9) mol/L (P less than .02), whereas the other preparation, which contained no glycosylated ferritin, did not show any effect of CFU-GM growth. A preparation enriched for glycosylated acidic isoferritins from human heart was found to produce a mean inhibition of 32% +/- 11% of the control at 10(-9) mol/L (P less than .01), whereas another one was ineffective. A significant part of the inhibitory activity was removed by preincubation with the monoclonal antibody 2A4 directed against human heart ferritin. The present findings indicate that basic isoferritins, ie, the predominant ferritin type in human blood, have no effect on the growth of human CFU-GM, and this is in keeping with indirect clinical evidence. Inhibition of colony formation may be obtained by some preparations of acidic isoferritins that are rich in H subunits and bind to concanavalin A. The mechanism(s) responsible for this are not clear, but the effective concentrations are higher than those found in human blood both under normal conditions and in leukemia. At present, the physiologic significance of the observed inhibitory activity is uncertain.
Download full-text PDF |
Source |
---|
Probl Radiac Med Radiobiol
December 2024
State Institution «National Research Center of Radiation Medicine, Hematology and Oncology of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine.
Objective: To determine the structure of abnormalities of bone tissue and substantiate the management tactics inacute lymphoblastic leukemia (ALL) pediatric patients and in children with no oncohematological disorders, livingin radiologically contaminated territories (RCT).
Materials And Methods: Children (n = 220) living in RCT were the study participants i.e.
J Clin Anesth
February 2025
Institute of Anesthesiology, University of Zurich and University Hospital Zurich, Zurich, Switzerland.
Background: Iron deficiency anemia in the perioperative setting is treated predominantly with intravenous iron formulation, of which ferric carboxymaltose may induce hypophosphatemia by modulating fibroblast growth factor 23.
Methods: In this single-center, prospective, randomized, double-blind trial, we consented 92 adult patients scheduled for elective major abdominal or thoracic surgery. These patients either had isolated iron deficiency (plasma ferritin <100 ng/mL or transferrin saturation < 20 %) or iron deficiency anemia (hemoglobin (Hb) 100-130 g/L with plasma ferritin <100 ng/mL or transferrin saturation < 20 %).
Nanoscale
January 2025
Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany.
Understanding protein adsorption on the surface of nanoparticles (NPs) is crucial for determining their behavior in biological environments. Early research in this field faced challenges in producing high-quality NPs. Advancements in NP fabrication now allow for precise modifications of specific parameters, such as zeta potential.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China.
Interleukin 15 (IL15) is crucial for fostering the survival and proliferation of nature killer (NK) cells and cytotoxic T lymphocytes (CTLs), playing a pivotal role in tumor control. However, IL15 supplementary therapy encounters challenges such as systemic inflammation and non-specific stimulation of cancer cells. Herein, a nanovesicle termed DoxFILN, comprising a membrane presenting IL15/IL15 receptor α complexes (IL15c) and a core of doxorubicin-loaded ferritin (Dox-Fn) are reported.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan.
Histidine modifications of proteins are broadly based on chemical methods triggering N-substitution reactions such as aza-Michael addition at histidine's moderately nucleophilic imidazole side chain. While recent studies have demonstrated chemoselective, histidine-specific modifications by further exploiting imidazole's electrophilic reactivity to overcome interference from the more nucleophilic lysine and cysteine, achieving site-specific histidine modifications remains a major challenge due to the absence of spatial control over chemical processes. Herein, through X-ray crystallography and cryo-electron microscopy structural studies, we describe the rational design of a nature-inspired, noncanonical amino-acid-incorporated, human ferritin-based metalloenzyme that is capable of introducing site-specific post-translational modifications (PTMs) to histidine in peptides and proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!