A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biotransformation of chloramphenicol by enriched bacterial consortia and the newly isolated bacterial strain Bordetella sp. C3: Detoxifying biotransformation pathway and its potential application in agriculture. | LitMetric

Limited sources of consortia/pure cultures that degrade chloramphenicol (CAP) and the incomplete biodegradation profiles of CAP hinder the remediation of CAP pollution. In this study, two CAP-degrading consortia (designated as CM and PM) were obtained after long-term acclimation, and Alcaligenaceae and Enterobacteriaceae enriched in CM and PM, respectively. Notably, Bordetella sp. C3, a new isolate belonging to the family Alcaligenaceae, was isolated from CM and capable of degrading 85.7 % 10 mg/L CAP at 30 ℃ and pH 7 in 10 d. The biotransformation of CAP by Bordetella sp. C3 was proposed as a detoxification process, including a novel initial degradation pathway: dechlorination of CAP into AP. Strain C3 can also function as a plant growth-promoting bacterium that solubilizes inorganic phosphate and produces siderophores and indole-3-acetic acid (IAA). This study expands our knowledge of the migration and transformation pathways of CAP and microbial community profiles during acclimatization.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2024.131713DOI Listing

Publication Analysis

Top Keywords

cap
7
biotransformation chloramphenicol
4
chloramphenicol enriched
4
enriched bacterial
4
bacterial consortia
4
consortia newly
4
newly isolated
4
isolated bacterial
4
bacterial strain
4
strain bordetella
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!