Prenatal and preimplantation genetic testing for monogenic kidney disorders.

Kidney Int

Department of Genetics, University Medical Center Groningen, The Netherlands. Electronic address:

Published: October 2024

AI Article Synopsis

  • * Prenatal and preimplantation genetic testing options are discussed, emphasizing their importance for families, especially those considering having children, along with the associated legal and ethical issues.
  • * Noninvasive prenatal diagnosis is emerging as a promising alternative to invasive testing, while preimplantation genetic testing is increasingly sought after to select healthy embryos, particularly in disorders with late-onset symptoms.

Article Abstract

In recent years, advances in genetic sequencing techniques and in the analysis of sequencing data have significantly improved our ability to diagnose genetic kidney diseases. Identification of the disease-causing genetic variant(s) is crucial not only for prognostication and personalized management, but also for providing genetic counseling and guiding family planning decisions. It is particularly important that patients desiring children receive advice on their reproductive choices early, ideally before conception. This concise review focuses on the options available for prenatal and preimplantation genetic testing in the context of monogenic kidney diseases, including the latest progress and the legal and ethical issues associated with these reproductive technologies. Although these tests could be performed for all monogenic disorders where the disease-causing variant(s) has (have) been identified in the index patient, invasive prenatal testing is currently primarily performed for severe childhood-onset monogenic kidney disorders. Noninvasive prenatal diagnosis for monogenic disorders is a rapidly developing field that promises to provide an accurate and acceptable alternative to invasive procedures once several technical challenges have been addressed. Preimplantation genetic testing allows for the selection and implantation of embryos free from the disease-causing genetic variants, significantly lowering the risk of affected pregnancies. This option is becoming more popular among individuals with monogenic kidney diseases, particularly those with disorders that manifest later in life, such as autosomal dominant polycystic kidney disease. This review covers the procedure, its outcomes, and the technical, ethical and legal challenges of preimplantation genetic testing for monogenic kidney diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.kint.2024.06.031DOI Listing

Publication Analysis

Top Keywords

monogenic kidney
20
preimplantation genetic
16
genetic testing
16
kidney diseases
16
genetic
9
prenatal preimplantation
8
testing monogenic
8
kidney disorders
8
disease-causing genetic
8
genetic variants
8

Similar Publications

Next-generation sequencing has substantially transformed the genomic diagnosis of individuals affected by inherited renal disorders. Indeed, accurate and rapid diagnostic for patients with suspected genetic kidney diseases is not only important for prognosis and patient management but also for family counseling. Alport syndrome, a genetic disease primarily affecting the basement membrane, is characterized by hematuria, progressive kidney failure, hearing impairment, as well as ocular abnormalities and stems from mutations in genes encoding type IV collagen.

View Article and Find Full Text PDF

Childhood idiopathic nephrotic syndrome: recent advancements shaping future guidelines.

Pediatr Nephrol

December 2024

Néphrologie Pédiatrique, Centre de Référence du Syndrome Néphrotique Idiopathique de L'enfant Et L'adulte, Hôpital Necker - Enfants Malades, APHP, Inserm U1163, Institut Imagine, Université Paris Cité, Paris, France.

Childhood idiopathic nephrotic syndrome is an important pediatric kidney disease associated with significant morbidities and even mortality. Several guidelines have been developed to standardize the terminology and patient care among the pediatric nephrology community. Since the publication of these guidelines, there have been major breakthroughs in the disease management and the understanding of underlying pathogenesis through multi-omics investigations, including the identification of anti-nephrin autoantibodies, genetic susceptibility loci, and the pathogenic role of B cell subsets.

View Article and Find Full Text PDF

Introduction: The profile of genetic and nongenetic factors associated with progression to kidney failure (KF) in steroid-resistant nephrotic syndrome (SRNS) is largely unknown in admixed populations.

Methods: A total of 101 pediatric patients with primary SRNS were genetically assessed targeting Mendelian causes and status with a 62-NS-gene panel or whole exome sequencing, as well as genetic ancestry. Variant pathogenicity was evaluated using the American College Medical of Genetics and Genomics (ACMG) criteria.

View Article and Find Full Text PDF

Vitamin D regulates mineral homeostasis. The most biologically active form of vitamin D, 1,25-dihydroxyvitamin D (1,25D), is synthesized by CYP27B1 from 25-dihydroxyvitamin D (25D) and inactivated by CYP24A1. Human monogenic diseases and genome-wide association studies support a critical role for CYP24A1 in regulation of mineral homeostasis, but little is known about its tissue-specific effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!