Background: There is a dearth of literature regarding prognostic and predictive factors for outcome following pediatric decompressive craniectomy (DC) performed after traumatic brain injury (TBI). The aim of this study was to develop a random forest machine learning algorithm to predict outcomes following DC in pediatric patients.
Methods: This multi-institutional retrospective study assessed the 6-month postoperative outcome in pediatric patients who underwent DC. We developed a machine learning model using classification random forest (CRF) and survival random forest (SRF) algorithms for prediction of outcomes. Data on clinical signs, radiographic studies, and laboratory studies were collected. Outcome measures for the CRF model were mortality and good or bad outcome based on Glasgow Outcome Scale at 6 months. A Glasgow Outcome Scale score of ≥4 indicated a good outcome. Outcome for the SRF model was mortality during the follow-up period.
Results: The study included 40 pediatric patients. Hospital mortality rate was 27.5%, and 75.8% of survivors had a good outcome at 6-month follow up. The CRF model for 6-month mortality had a receiver operating characteristic area under the curve of 0.984, whereas, 6-month good and bad outcomes had a receiver operating characteristic area under the curve of 0.873. The SRF model was trained at the 6-month time point with a receiver operating characteristic area under the curve of 0.921.
Conclusions: CRF and SRF models successfully predicted 6-month outcomes and mortality following DC in pediatric patients with TBI. These results suggest that random forest models may be efficacious for predicting outcome in this patient population.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wneu.2024.10.075 | DOI Listing |
PLOS Digit Health
January 2025
Department of Health Informatics, School of Public Health, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia.
Postnatal care refers to the support provided to mothers and their newborns immediately after childbirth and during the first six weeks of life, a period when most maternal and neonatal deaths occur. In the 30 countries studied, nearly 40 percent of women did not receive a postpartum care check-up. This research aims to evaluate and compare the effectiveness of machine learning algorithms in predicting postnatal care utilization in Ethiopia and to identify the key factors involved.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Pediatrics, Copenhagen University Hospital-North Zealand, Hillerød, Denmark.
Background: Identification of mother-infant pairs predisposed to early cessation of exclusive breastfeeding is important for delivering targeted support. Machine learning techniques enable development of transparent prediction models that enhance clinical applicability. We aimed to develop and validate two models to predict cessation of exclusive breastfeeding within one month among infants born after 35 weeks gestation using machine learning techniques.
View Article and Find Full Text PDFPLoS One
January 2025
Institute for Physical Activity and Nutrition, Deakin University, Melbourne, VIC, Australia.
Heart disease remains a leading cause of mortality and morbidity worldwide, necessitating the development of accurate and reliable predictive models to facilitate early detection and intervention. While state of the art work has focused on various machine learning approaches for predicting heart disease, but they could not able to achieve remarkable accuracy. In response to this need, we applied nine machine learning algorithms XGBoost, logistic regression, decision tree, random forest, k-nearest neighbors (KNN), support vector machine (SVM), gaussian naïve bayes (NB gaussian), adaptive boosting, and linear regression to predict heart disease based on a range of physiological indicators.
View Article and Find Full Text PDFJMIR Perioper Med
January 2025
Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States.
Background: Postoperative delirium (POD) is a common complication after major surgery and is associated with poor outcomes in older adults. Early identification of patients at high risk of POD can enable targeted prevention efforts. However, existing POD prediction models require inpatient data collected during the hospital stay, which delays predictions and limits scalability.
View Article and Find Full Text PDFMol Divers
January 2025
Department of Biotechnology, Deen Dayal, Upadhyay Gorakhpur University, Gorakhpur, India.
Chronic lymphocytic leukemia (CLL) is a malignancy caused by the overexpression of the anti-apoptotic protein B-cell lymphoma-2 (BCL-2), making it a critical therapeutic target. This study integrates computational screening, molecular docking, and molecular dynamics to identify and validate novel BCL-2 inhibitors from the ChEMBL database. Starting with 836 BCL-2 inhibitors, we performed ADME and Lipinski's Rule of Five (RO5) filtering, clustering, maximum common substructure (MCS) analysis, and machine learning models (Random Forest, SVM, and ANN), yielding a refined set of 124 compounds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!