Skin wound treatments require efficient and targeted delivery of therapeutic agents to promote fast tissue regeneration and prevent infections. Hydrogels are one of the most popular products in the wound care market, although their use as medicated wound dressings remains a massive challenge when hydrophobic drugs are needed due to the hydrophilic nature of these soft materials. In this study, we developed innovative, dynamic hydrogels based on polyvinyl alcohol (PVA), pyrogallol as a hydrogen bond crosslinker, and casein micelles as hydrophobic reservoirs of silver sulfadiazine (SSD) for enzyme-activated smart delivery at wound sites. The hydrogel formulation was optimized for mechanical strength, viscoelastic behavior, water absorption capacity, and drug-loading efficiency. In vitro drug delivery studies revealed a sustainable release profile of SSD for over 24 h from the micelles within the hydrogel network. Furthermore, biocompatibility evaluation using mouse fibroblast L929 cells demonstrated that the hydrogel did not inhibit cell viability, while in vivo experiments on Caenorhabditis elegans (C. elegans) proved its safety in complex organisms. This versatile hydrogel also has anti-inflammatory and antibacterial effects stemming from the therapeutic polyphenol, which could benefit the healing process. The combination of PVA, pyrogallol, and casein-based nanocarriers could offer an approach to wound healing, providing a new platform for hosting hydrophobic therapeutic substances. Overall, this hydrogel system shows great promise in wound care and could broaden the applications of this family of soft materials for treating various skin injuries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioadv.2024.214075 | DOI Listing |
ACS Cent Sci
December 2024
Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China.
Prodrug-based nanoassemblies are promising platforms for cancer therapy. Prodrugs typically consist of three main components: drug modules, intelligent response modules, and modification modules. However, the available modification modules are usually hydrophobic aliphatic side chains, which affect the activation efficiency of the prodrugs.
View Article and Find Full Text PDFJ Control Release
December 2024
Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, DuShuHu High Education Zone, Suzhou, Jiangsu Province 215123, China. Electronic address:
Cancer stem cells (CSCs) play an important role in the development of triple-negative breast cancer (TNBC), including metastasis, invasion, tumorigenicity, and drug resistance. Moreover, non-CSCs can spontaneously transform into CSCs in special tumor microenvironments, thereby leading to poor prognosis or even failed treatments. Therefore, reversing tumor stem cells into normal tumor cells in a sustained-acting manner is a promising strategy.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2024
Laboratório de Modelagem Computacional - LaModel, Instituto de Ciências Exatas - ICEx, Universidade Federal de Alfenas UNIFAL-MG, 37133-840, Alfenas, Minas Gerais, Brazil. Electronic address:
The Nipah virus (NiV) poses a pressing global threat to public health due to its high mortality rate, multiple modes of transmission, and lack of effective treatments. NiV glycoprotein G (NiV-G) emerges as a promising target for the discovery of NiV drugs because of its essential role in viral entry and membrane fusion. Therefore, in this study, we applied an integrated computational and biophysics approach to identify potential inhibitors of NiV-G within a curated dataset of Peruvian phytochemicals.
View Article and Find Full Text PDFJ Nanobiotechnology
December 2024
Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
Chemotherapy is still one of the major approaches in triple-negative breast cancer (TNBC) treatment. The development of new formulations for classic chemotherapeutic drugs remains interests in studies. Camptothecin (CPT) is powerful antitumor agents in TNBC treatment though its clinic applications are limited by its low water solubility and systemic toxicity.
View Article and Find Full Text PDFJ Control Release
December 2024
School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, United Kingdom. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!