Monitoring of the levels of 5-hydroxyindole-3-acetic acid (5-HIAA) is of significant importance for diagnostics of carcinoid tumors. We propose simple catalytic electrochemical sensors for the determination of 5-HIAA in urine using laccase and its mimetics. Laccase-like nanozymes (LacNZs) were synthesized via a chemical reduction, and resulting PtMn and MnO nanoflowers (NFs) demonstrated laccase-like activity similar to the laccase from the Trametes zonata. In addition, these LacNZs showed enhanced stability under a wide range of pH (3.0-7.5), temperatures (4-70 °C), and ionic strengths (up to 500 mM NaCl). The developed PtMn NF/graphite electrode, similar to a laccase/graphite electrode, can detect 5-HIAA with a high sensitivity (25 000 ± 12 A·M·m and 1900 ± 9 A·M·m, respectively) and have linear ranges of 0.3 - 15 μM and 2 - 50 μM. The sensors work at low working potentials with a detection limit of 0.16 and 1.4 μM, covering the normal and pathologic ranges of 5-HIAA (1 - 50 μM) content in urine. They have been successfully applied to 5-HIAA assay in urine samples of people with various diseases and revealed good recovery values and reproducibility. Additionally, the LacNZ-sensor has the best stability and can be used up to 20 days.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioelechem.2024.108839 | DOI Listing |
J Hazard Mater
November 2024
Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China. Electronic address:
In this study, the laccase-mimicking enzyme MnO/Cu-BDC-His was synthesized by a facile procedure, and was applied in tetracycline antibiotics (TCs) identification and dye degradation. The MnO/Cu-BDC-His nanozymes effectively recognized phenolic hydroxyl groups in TCs and catalyzed the generation of colored oxidation products with different characteristic absorbance peaks at 350 nm, 525 nm and 600 nm. Different TCs mixtures produced different absorbance intensities at the above wavelengths and exhibited cross-color responses.
View Article and Find Full Text PDFTalanta
February 2025
Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China. Electronic address:
Nanozymes have gained prominence for their utility in biosensing and disease diagnostics. However, challenges arise from complex sample matrices and nonspecific enzyme activities that contribute to false signals. This study introduces multifunctional platinum nanoclusters (Pt NCs) exhibiting peroxidase-like (POD-like), oxidase-like (OXD-like), and laccase-like activities tailored for enhanced biosensing capabilities.
View Article and Find Full Text PDFBioelectrochemistry
February 2025
Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; Drohobych Ivan Franko State Pedagogical University, Drohobych 82100, Ukraine. Electronic address:
Monitoring of the levels of 5-hydroxyindole-3-acetic acid (5-HIAA) is of significant importance for diagnostics of carcinoid tumors. We propose simple catalytic electrochemical sensors for the determination of 5-HIAA in urine using laccase and its mimetics. Laccase-like nanozymes (LacNZs) were synthesized via a chemical reduction, and resulting PtMn and MnO nanoflowers (NFs) demonstrated laccase-like activity similar to the laccase from the Trametes zonata.
View Article and Find Full Text PDFChem Commun (Camb)
October 2024
College of Chemistry, Jilin University, Changchun 130012, China.
In contrast to natural enzymes, nanozymes show promising advantages of low cost and high stability for analytical applications. The simple mix of L-phenylalanine (F) and Cu produces two-dimensional nanosheets of a coordination polymer with a high surface area ratio and rich exposed active sites as a novel catalyst. As the mimetic of natural laccase, this nanozyme (F-Cu) can catalyze the oxidative coupling reaction of 2,4-dichlorophenol (2,4-DP) and 4-aminoantipyrine (4-AP) to produce a distinct red product, thus establishing an intuitive and simple method for the detection of thiram.
View Article and Find Full Text PDFBiosens Bioelectron
December 2024
Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, College of New Energy and Environment, Jilin University, Changchun 130021, PR China. Electronic address:
Expanding target pesticide species and intelligent pesticide recognition were formidable challenges for existing cholinesterase inhibition methods. To improve this status, multi-active Mel-Cu nanozyme with mimetic Cu-N sites was prepared for the first time. It exhibited excellent laccase-like and peroxidase-like activities, and can respond to some pesticides beyond the detected range of enzyme inhibition methods, such as glyphosate, carbendazim, fumonisulfuron, etc.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!