Dynamic/static pressure-induced copolymerization and property changes of lotus seed starch with chlorogenic acid.

Food Chem

College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China. Electronic address:

Published: February 2025

Pressure promotes the formation of starch-polyphenol complexes, but their classification and properties are still unclear. This study aimed to elucidate the effects of dynamic high-pressure homogenization (10-50 MPa) and static hydrostatic pressure (100-500 MPa) on the copolymerization behavior and properties of lotus seed starch (LS)-endogenous polyphenol chlorogenic acid (CA) complexes. The results showed that both pressures induced LS-CA to form stable inclusion-type complexes and easily destructible noninclusion-type complexes. Increased pressure promoted the formation of inclusion-type complexes, with dynamic pressure having a particularly strong effect. However, noninclusion-type complexes began breaking down at 20 MPa under dynamic pressure and 300 MPa under static pressure. Inclusion-type complexes primarily improve starch ordering, and noninclusion-type complexes enhance water holding capacity, but excessive proportions of either type affect pasting performance. These findings offer insights into transforming specific starch structures through small molecular components and provide a theoretical basis for controlling functional starch product processing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2024.141723DOI Listing

Publication Analysis

Top Keywords

inclusion-type complexes
12
noninclusion-type complexes
12
lotus seed
8
seed starch
8
chlorogenic acid
8
complexes
8
dynamic pressure
8
pressure
6
starch
5
dynamic/static pressure-induced
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!