Background: Phenotypic variability within families with epilepsy is often observed, even when relatives share the same monogenic cause. We aimed to investigate whether common polygenic risk for epilepsy could explain the penetrance and phenotypic expression of rare pathogenic variants in familial epilepsies.
Methods: We studied 58 clinically heterogeneous families with genetic epilepsy with febrile seizures plus (GEFS+). Relatives were coded as either unaffected or affected with epilepsy, and graded according to phenotype severity: no seizures, febrile seizures (FS) only, febrile seizures plus (FS+), generalised/focal epilepsy, or developmental and epileptic encephalopathy (DEE). Epilepsy polygenic risk scores (PRSs) were tested for association with epilepsy phenotype. Within families, the mean PRS difference was compared between pairs concordant versus discordant for phenotype severity. Statistical analyses were performed using mixed-effect regression models.
Findings: 304 individuals segregating a known, or presumed, rare variant of large effect, were studied. Within families, higher epilepsy polygenic risk was associated with an epilepsy diagnosis (OR = 1.39, 95% CI 1.08, 1.80, p = 0.040). Relatives with a more severe phenotype had a mean pairwise PRS difference of +0.19 higher than relatives with a milder phenotype (p = 0.010). The difference increased with greater phenotype discordance between relatives. As the cohort included two rare variants with >30 relatives each, variant-specific genotype-phenotype associations could also be analysed. Whilst the epilepsy PRS effect was strong for relatives segregating the GABRG2 p.Arg82Gln pathogenic variant (p = 0.0010), the effect was not significant for SCN1B p.Cys121Trp.
Interpretation: We provide support for genetic background modifying the penetrance and phenotypic expression of rare variants associated with 'monogenic' epilepsies. In GEFS+ families, relatives with higher epilepsy PRSs were more likely to show penetrance (epilepsy diagnosis) and a more severe phenotype. Variant-specific analyses suggest that some rare variants may be more susceptible to PRS modification, carrying important genetic counselling and disease prognostication implications for patients.
Funding: National Health and Medical Research Council of Australia, Medical Research Future Fund of Australia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558038 | PMC |
http://dx.doi.org/10.1016/j.ebiom.2024.105404 | DOI Listing |
Biosens Bioelectron
December 2024
2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic address:
Anti-seizure medications and deep brain stimulation are widely used therapies to treat seizures; however, both face limitations such as resistance and the unpredictable nature of seizures. Recent advancements, including responsive neural stimulation and on-demand drug release, have been developed to address these challenges. However, a gap remains, as electrical stimulation provides only transient effects while medication has a delayed onset.
View Article and Find Full Text PDFDev Med Child Neurol
December 2024
Department of Pediatrics, McMaster University, Hamilton, Canada.
Sudden deaths in infants and children represent a profound and tragic event that continues to challenge researchers despite extensive investigation over several decades. The predominant phenotype, sudden infant death syndrome (SIDS), has evolved into the broader category of sudden unexpected infant death (SUID). In older children, a less understood phenomenon known as sudden unexplained death in childhood (SUDC) has garnered attention.
View Article and Find Full Text PDFEur J Med Genet
December 2024
First Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming 650000, China. Electronic address:
The Chromodomain Helicase DNA-binding (CHD) protein family is ATP-dependent chromatin remodeling proteins that utilize energy produced by ATP hydrolysis to regulate chromatin structure and thereby modulate gene expression. The earliest report of a CHD3 gene mutation was by O'Roak, who found it during whole exome sequencing of 189 autism families in 2012. In 2018, Snijders Blok systematically assessed the autosomal dominant neurodevelopmental disorder caused by CHD3 gene damage, known as Snijders Blok-Campeau syndrome (SNIBCPS, OMIM 618205).
View Article and Find Full Text PDFEur J Med Genet
December 2024
Rare Diseases and Medical Genetics Unit, Bambino Gesù Children's Hospital, IRCSS, Rome, Italy.
O'Donnell-Luria-Rodan (ODLURO) syndrome is an autosomal dominant neurodevelopmental disorder mainly characterized by global development delay/intellectual disability, white matter abnormalities, and behavioral manifestations. It is caused by pathogenic variants in the KMT2E gene. Here we report seven new patients with loss-of-function KMT2E variants, six harboring frameshift/nonsense changes, and one with a 7q22.
View Article and Find Full Text PDFAm J Hum Genet
December 2024
Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!