In recent years, the micro air vehicle (MAV) oscillations caused by thrust imbalances have received more attention. This paper proposes a dual-wing thrust balance model (DTBM) that can solve the above problem by iterating the modified rotation angle formula. The core control parameter of the DTBM model is the au angle, which refers to the angle between the wing surface and the stroke plane at the mid-stroke position during the upstroke. For each degree change in the au angle, the range of variation in the dimensionless average thrust coefficient is between 0.0225-0.0268. A thrust coefficient of 0.0225 causes the dragonfly to move forward by 9.037 cm in one second, which is equivalent to 1.29 times its body length. By using DTBM, the average thrust coefficient can be reduced to below 0.001 in just a few iterations. No matter how complex the motion pattern is, the DTBM can achieve thrust balance within 0.278 s. Through our research, when selecting the deviation angle motion of real dragonflies, the dual-wing au angles exhibit a highly linear correlation with wing spacing, called linear motion. In contrast, the nonlinear variation of the au angle appears in the hindwing of the no-deviation motion and the forewing of the elliptical deviation motion. All of the nonlinear changes are referred to as nonlinear motion. Nonlinear variation of the au angle arises from larger disturbances of the lateral force during the upstroke. The stronger lateral force is closely related to the flapping trajectory. When the flapping trajectory causes the dual-wing to closely approach each other in the mid-stroke, a continuous positive pressure zone forms between the dual-wing. The collision of the leading-edge vortex and the shedding of the trailing-edge vortex is the special flow field structure in the nonlinear motion. Guided by the DTBM, future designs of MAVs will be able to better achieve thrust balance during hovering flight, requiring only the embedding of the iteration algorithm and prediction function of the DTBM in the internal chip.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1748-3190/ad8d29 | DOI Listing |
Sci Rep
December 2024
School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, 330013, Jiangxi, People's Republic of China.
Compared with simple formations, EPB (earth pressure balance) shield tunnelling in composite formations encounters severe problems with muck conditioning and require improved muck conditioning technology to fulfil expectations for continuous and efficient excavation. In the Nanchang Metro Line 4 Project, a water-rich sand-argillaceous siltstone composite formation is encountered. With a high moisture content and complex composite formation ratio, it is quite difficult to determine the optimum muck conditioning scheme, and thus, muck spewing accidents frequently occur during the tunnelling process.
View Article and Find Full Text PDFAdv Mater
December 2024
Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin University, Tianjin, 300072, China.
Organic photodiodes (OPDs) that utilize wavelength-selective absorbing molecules offer a direct approach to capturing specific wavelengths of light in multispectral sensors/imaging systems without filters. However, they exhibit broad response bandwidths, low external quantum efficiency (EQE), and often require compromises in two-component photoactive materials. Herein, the first utility of boron-nitrogen (BN) single-component photoabsorbers, leveraging a multi-resonance effect are introduced to attain OPDs with both record-high EQE of 33.
View Article and Find Full Text PDFBiochemistry
December 2024
Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong 511400, China.
Engrailed homeodomain (EngHD), a highly charged transcription factor regulating over 200 genes, is a fast-folding protein. Recent studies have shown that the abundant charged residues in EngHD not only facilitate protein-DNA interactions but also influence the conformational disorder of its native structure. However, the mechanisms by which electrostatic interactions modulate the folding of EngHD remain unclear.
View Article and Find Full Text PDFBioact Mater
March 2025
Department of Orthopaedics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, China.
Intervertebral disc degeneration (IVDD) is a prevalent chronic spinal condition characterized by the deterioration of the intervertebral discs (IVD), leading to structural damage and associated pain. This degenerative process is closely linked to oxidative stress injury, which plays a pivotal role in its onset and progression. Oxidative stress in IVDD results from the excessive production of reactive oxygen species (ROS) and impaired ROS clearance mechanisms, disrupting the redox balance within the intervertebral disc.
View Article and Find Full Text PDFBioinspir Biomim
November 2024
School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbaybatyr Ave., Astana 010000, Kazakhstan.
In recent years, the micro air vehicle (MAV) oscillations caused by thrust imbalances have received more attention. This paper proposes a dual-wing thrust balance model (DTBM) that can solve the above problem by iterating the modified rotation angle formula. The core control parameter of the DTBM model is the au angle, which refers to the angle between the wing surface and the stroke plane at the mid-stroke position during the upstroke.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!