Cyclic nitrenium ions containing five-membered and six-membered rings are available, however, the seven-membered cyclic nitrenium ions (azepinium ions) are rare. The chemistry of these species is related to their stability originating from the aromaticity due to 6π electrons. Very few theoretical and experimental studies have been conducted on the azepinium ions. Related clozapine and olanzapine cations (diazepinium ions) were observed during drug metabolism studies. In this work, quantum chemical analysis has been carried out to estimate the stability, aromaticity, and electrophilicity of several derivatives of azepinium ions. A few of the designed azepinium ions carry ΔE values in the range of 50 kcal/mol favoring singlet state; π donating groups at the 2nd position increase the singlet-triplet energy differences. Most of the substituents reduce the NICS(1) values compared to the parent system. Ring fusion with heterocyclic five-membered rings generally increases the aromaticity and the stability of the azepinium ion ring systems. The electrophilicity parameters estimated in terms of HIA, FIA, and ω values indicate that it is possible to fine-tune the chemical properties of azepinium ions with appropriate modulation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcc.27520DOI Listing

Publication Analysis

Top Keywords

azepinium ions
24
ions
9
quantum chemical
8
cyclic nitrenium
8
nitrenium ions
8
azepinium
7
stable aromatic
4
aromatic electrophilic
4
electrophilic azepinium
4
ions design
4

Similar Publications

Cyclic nitrenium ions containing five-membered and six-membered rings are available, however, the seven-membered cyclic nitrenium ions (azepinium ions) are rare. The chemistry of these species is related to their stability originating from the aromaticity due to 6π electrons. Very few theoretical and experimental studies have been conducted on the azepinium ions.

View Article and Find Full Text PDF

Benzylpyridine and papaverine, an alkyl quinoline, both produce product ions containing an azepinium ring during atmospheric pressure chemical ionisation or electrospray multistage mass spectrometry. By controlling the trapping conditions, an isolated azepinium ion was held within the trap for an extended period of time without excitation. A subsequent analytical scan revealed a mass spectrum containing ions at two mass-to-charge (m/z) ratios, the first at the m/z of the isolated product ion and the second at an m/z ratio corresponding to the adduction of a molecule of solvent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!