A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Isolation of marine-derived filamentous fungi and their potential application for bioremediation process. | LitMetric

Isolation of marine-derived filamentous fungi and their potential application for bioremediation process.

Braz J Microbiol

Post Graduation Program of Biosciences of University of Latin American Integration (UNILA), Environmental Biotechnology Laboratory, Tarquínio Joslin dos Santos Av., 1000 Jd Universitário, Foz do Iguaçu, PR, Brazil.

Published: October 2024

We evaluated the bioremediation potential of petroleum-derived compounds using fungal strains isolated from marine samples collected on the coast of the states of Paraná, Brazil. About 75 isolated filamentous fungi were subjected to assays including decolorization of the synthetic dye Remazol Brilliant Blue R (RBBR), tolerance to diesel oil, production of bioemulsifying and degradation of pyrene. Nine isolates could decolorize RBBR between 3.4% and 88.16%. Ten were able to tolerate diesel oil and/or pyrene. One isolate was able to produce compounds with emulsifying properties. Three strains, Trichoderma sp. FM14 (Penicillium spp. FM02 and FM16, and FM14) were able to degrade pyrene between 33.0 and 42.4%, after 8 days. The results of the present work encourage future studies to optimize enzymatic conditions using isolates with biotechnological potential in bioremediation studies of marine environments contaminated with industrial pollutants including hydrocarbons derived from petroleum such as diesel oil and PAHs and synthetic dyes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s42770-024-01536-2DOI Listing

Publication Analysis

Top Keywords

diesel oil
12
filamentous fungi
8
isolation marine-derived
4
marine-derived filamentous
4
fungi potential
4
potential application
4
application bioremediation
4
bioremediation process
4
process evaluated
4
evaluated bioremediation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!