Regulating transport efficiency through the nuclear pore complex: The role of binding affinity with FG-Nups.

Mol Biol Cell

Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, CA 94720.

Published: December 2024

Macromolecules are transported through the nuclear pore complex (NPC) via a series of transient binding and unbinding events with FG-Nups, which are intrinsically disordered proteins anchored to the pore's inner wall. Prior studies suggest that the weak and transient nature of this binding is crucial for maintaining the transported molecules' diffusivity. In this study, we explored the relationship between binding kinetics and transport efficiency using Brownian dynamics simulations. Our results indicate that the duration of binding is a critical factor in regulating transport efficiency. Specifically, excessively short binding durations insufficiently facilitate transport, while overly long durations impede molecular movement. We calculated the optimal binding duration for efficient molecular transport and found that it aligns with other theoretical predictions. Additionally, the calculated value is comparable to experimental measurements of the association timescale between nuclear transport receptors and FG-Nups at a single binding site. Our study provides a quantitative framework that bridges local molecular interactions with overall transport dynamics through the NPC, offering valuable insights into the mechanisms governing selective molecular transport.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656470PMC
http://dx.doi.org/10.1091/mbc.E24-05-0224DOI Listing

Publication Analysis

Top Keywords

transport efficiency
12
regulating transport
8
nuclear pore
8
pore complex
8
binding
8
molecular transport
8
transport
7
efficiency nuclear
4
complex role
4
role binding
4

Similar Publications

Cadmium translocation combined with metabolomics analysis revealed potential mechanisms of MT@MSN-CS and GSH@MSN-CS in reducing cadmium accumulation in rice (Oryza sativa L.) grains.

Environ Sci Pollut Res Int

January 2025

Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Department of Environmental Engineering, Zhejiang University, Zhejiang Province, Hangzhou, 310058, P.R. China.

Applying nano-delivery systems for phytohormones via foliar application has proven effective in reducing grain cadmium (Cd) levels in crops. However, the mechanisms underlying this reduction remain inadequately understood. This study integrated the determination of leaf photosynthetic parameters, Cd translocation analysis, and metabolomics to elucidate the effects of reduced glutathione (GSH) and melatonin (MT), delivered with or without chitosan-encapsulated mesoporous silica nanoparticles (MSN-CS), on grain Cd levels in rice.

View Article and Find Full Text PDF

In the face of forest fire emergencies, fast and efficient dispatching of rescue vehicles is an important means of mitigating the damage caused by forest fires, and is an effective method of avoiding secondary damage caused by forest fires, minimizing the damage caused by forest fires to the ecosystem, and mitigating the losses caused by economic development. this paper takes the actual problem as the starting point, constructs a reasonable mathematical model of the problem, for the special characteristics of the emergency rescue vehicle scheduling problem of forest fires, taking into account the actual road conditions in the northern pristine forest area, through the analysis of the cost of paths between the forest area and the highway, to obtain the least obstructed rescue paths, to narrow the gap between the theoretical model and the problem of the actual. Improvement of ordinary genetic algorithm, design of double population strategy selection operation, the introduction of chaotic search initialization population, to improve the algorithm's solution efficiency and accuracy, through the northern pristine forest area of Daxing'anling real forest fire cases and generation of large-scale random fire point simulation experimental test to verify the effectiveness of the algorithm, to ensure that the effectiveness and reasonableness of the solution to the problem of forest fire emergency rescue vehicle scheduling program.

View Article and Find Full Text PDF

Generally, to address the resource management issues in high-speed railway operations, particularly in the context of large-scale networked high-speed train transportation organizations, a phased optimization approach is introduced. This approach divides the problem into two stages: the high-speed train timetabling and the planning of Electric Multiple Unit (EMU) route. The lack of direct integration between these stages has hindered the flexible and efficient utilization of line capacity and EMU resources based on large-scale network, limiting the potential for mutual compensation and coordination among different types of resources across different regions.

View Article and Find Full Text PDF

Engineered sulfonated porous carbon/cellulose nanofiber hybrid membrane for high-efficiency osmotic energy conversion applications.

Int J Biol Macromol

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

Harnessing ionic gradients to generate electricity has inspired the development of nanofluidic membranes with charged nanochannels for osmotic energy conversion. However, achieving high-performance osmotic energy output remains elusive due to the trade-off between ion selectivity and nanochannel membrane permeability. In this study, we report a homogeneous nanofluidic membrane, composed of sulfonated nanoporous carbon (SPC) and TEMPO-oxidized cellulose nanofibers (T-CNF), engineered to overcome these limitations.

View Article and Find Full Text PDF

The droplet dynamics of asymmetrical impingement on moving ridged surface.

J Colloid Interface Sci

January 2025

School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093 China. Electronic address:

Hypothesis: The depth of research into the mechanism of droplet impacting structured surfaces dictates the efficacy of their applications. The impact stress generated when a droplet impacts a surface is a pivotal factor influencing the efficiency of surface applications, ultimately determining the extent of surface wear. Despite the systematic examination of impact force, there remains a scarcity of research on impact stress and its mitigation strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!