Purpose: Precision oncology relies on accurate and interpretable reporting of testing and mutation rates. Focusing on the mutations in advanced colorectal carcinoma, non-small-cell lung carcinoma, and cutaneous melanoma, we developed a platform displaying testing and mutation rates reported in the literature, which we annotated using an artificial intelligence (AI) and natural language processing (NLP) pipeline.

Methods: Using AI, we identified publications that likely reported a testing or mutation rate, filtered publications for cancer type, and identified sentences that likely reported rates. Rates and covariates were subsequently manually curated by three experts. The AI performance was evaluated using precision and recall metrics. We used an interactive platform to explore and present the annotated testing and mutation rates by certain study characteristics.

Results: The interactive dashboard, accessible at the BRAF dimensions website, enables users to filter mutation and testing rates with relevant options (eg, country of study, study type, mutation type) and to visualize annotated rates. The AI pipeline demonstrated excellent filtering performance (>90% precision and recall for all target cancer types) and moderate performance for sentence classification (53%-99% precision; ≥75% recall). The manual annotation of testing and mutation rates revealed inter-rater disagreement (testing rate, 19%; mutation rate, 70%), indicating unclear or nonstandard reporting of rates in some publications.

Conclusion: Our AI-driven NLP pipeline demonstrated the potential for annotating biomarker testing and mutation rates. The difficulties we encountered highlight the need for more advanced AI-powered literature searching and data extraction, and more consistent reporting of testing rates. These improvements would reduce the risk of misinterpretation or misunderstanding of testing and mutation rates by AI-based technologies and the health care community, with beneficial impacts on clinical decision-making, research, and trial design.

Download full-text PDF

Source
http://dx.doi.org/10.1200/PO.23.00685DOI Listing

Publication Analysis

Top Keywords

testing mutation
28
mutation rates
24
rates
12
mutation
11
testing
11
artificial intelligence
8
mutation testing
8
reporting testing
8
mutation rate
8
precision recall
8

Similar Publications

Biomethanation is a crucial process occurring in natural and engineered systems which can reduce carbon dioxide to methane impacting the global carbon cycle. However, little is known about the effect of on-and-off gaseous provision and micronutrients on bioconversion. Here, anaerobic microbiomes underwent intermittent feeding with incremental starvations and selective metal supplementation to assess the impact of hydrogen and carbon dioxide availability on microbial physiology.

View Article and Find Full Text PDF

Introduction: The diagnosis of pediatric tuberculosis (TB) is challenging, due to the lower sensitivity of microbiological tests, such as culture and microscopy, compared to their performance in adult cases. Guidelines have introduced molecular tests, including GeneXpert MTB/ RIF and GeneXpert MTB/RIF Ultra. These tests use a real-time polymerase chain reaction method and provide information on M.

View Article and Find Full Text PDF

Objective: To explore the genetic characteristics of a Chinese pedigree with rare mosaic 11q partial duplication and its pathogenetic mechanisms.

Methods: A pedigree which underwent prenatal diagnosis at Wenzhou Central Hospital between September 25, 2015 and November 30, 2023 was selected for the study. Clinical data were collected from the pedigree.

View Article and Find Full Text PDF

[Clinical and genetic analysis of a child with Lamb-Shaffer syndrome due to a de novo variant of SOX5 gene].

Zhonghua Yi Xue Yi Chuan Xue Za Zhi

January 2025

Department of Clinical Laboratory, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou Key Laboratory of Children's Infection and Immunity, Zhengzhou, Henan 450018, China.

Objective: To explore the clinical features of a child with Lamb-Shaffer syndrome (LAMSHF) due to a variant of SOX5 gene.

Methods: A child who was admitted to Children's Hospital Affiliated to Zhengzhou University in July 2022 was selected as the study subject. Clinical data of the child was collected.

View Article and Find Full Text PDF

[Genetic analysis of a child with Leukoencephalopathy with ataxia caused by a homozygous variant of CLCN2 gene and a literature review].

Zhonghua Yi Xue Yi Chuan Xue Za Zhi

January 2025

Department of Neurology, the Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), Changsha, Hunan 410007, China.

Objective: To explore the clinical manifestations and genetic characteristics of a child with Leukoencephalopathy with ataxia (LKPAT) caused by a CLCN2 gene variant.

Methods: A retrospective analysis was conducted on the clinical data of a child admitted to Hunan Children's Hospital in June 2024 due to "intermittent convulsions for 13 days". Peripheral blood samples were collected from the child and his parents for whole exome sequencing, followed by Sanger sequencing validation and pathogenicity analysis of candidate variants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!