Lam (Lamarck et al., 1788) is an endemic species widely distributed in China. In Sep. 2022, leaf spot symptoms were observed on in Xuhui district (31◦9'16''N, 121◦26'36''E), Shanghai, China, with an incidence rate of 55% in the examination of 9 trees. The leaves showed typical symptoms of anthracnose with irregular gray-brown spots and sunken areas. For isolation, 5 × 5 mm sections were cut from the lesion edge of 20 infected leaves collected from 2 trees. The surface of the sections was sterilized by immersion in 75% ethanol for 30 s, followed by 5% NaClO for 1 min, rinsed three times with sterile water, and dried on sterile filter paper. These sections were placed on PDA plates incubated at 25°C in darkness. Eighteen isolates with similar colony morphology were obtained and purified by single spore culturing. Two isolates (YKY2301, 2302) from separate trees were further tested. On the 6 day, the colonies had a diameter of 7.6 to 8.4 cm and appeared white to gray-white with aerial hyphae. The colony's central part exhibited an orange hue due to the conidia accumulation, while the undersides displayed an orange-yellow color. The hyphae were hyaline and smooth, with septa and branches, and the conidia were cylindrical with blunt to slightly rounded ends, measuring 13.1 to 18.8 (average 15.9) μm× 4.0 to 6.6 (average 5.4) μm (n=184). From conidia germinated on glass slides, the appressoria measured 5.5 to 6.3 μm ×4.9 to 5.1 μm (n=50) and were nearly spherical or elliptical in shape. These characteristics matched those of the species complex (Cannon et al., 2012; Weir et al., 2012). For molecular identification, the genomic DNA was extracted using a modified CTAB method (Luo et al., 2012). Gene fragments including ITS (PP125667, PP125668), (PP153428, PP153429), (PP153424, PP153425), (PP153917, PP190256), and (PP153426, PP153427) were obtained by PCR using universal primers (Huang et al., 2022) and sequenced. The sequences exhibited 98.19% to 99.82% identity with the corresponding gene of the type strain IMI356878 (JX010152, JX010056, JX009531, JX010445, JQ807843) in NCBI BLAST. A multilocus Maximum likelihood phylogenetic tree was constructed based on concatenated the five genes by PhyloSuite. It showed that YKY2301, 2302 were on the same branch with . Based on these results, the isolates were identified as . Pathogenicity tests were conducted by mycelial and conidia inoculation. 5 mm mycelial or blank agar plugs were inoculated onto the leaves of 2 healthy trees in a garden (25 to 30 °C), with and without wounds made by toothpick pricking (n≥3 per group). All mycelial inoculated leaves showed leaf spots on the 6 day. Three healthy 2-year-old seedlings were inoculated with either conidia (10 conidia/ml) or water by leaf spray, and maintained in a climate chamber (27 °C, 80% humidity). Inoculated seedlings showed necrotic leaf spots on day 14, and wilted within 3 weeks. The controls in all tests remained asymptomatic. The pathogen has been re-isolated and confirmed by sequencing, thus fulfilling Koch's postulates. This is the first report of leaf spots caused by on in the world. As illustrated by the example of legume pod infection (Gerusa et al., 2019), it poses a potential threat to the fruits of , despite currently only affecting their ornamental value. This report provides basic information for future research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PDIS-04-24-0839-PDN | DOI Listing |
Microorganisms
December 2024
Department of Phytopathology, Institute of Phytomedicine, Faculty of Agricultural Sciences, University of Hohenheim, Otto-Sander-Str. 5, D-70599 Stuttgart, Germany.
Strawberries hold significant economic importance in both German and global agriculture. However, their yield is often adversely affected by fungal diseases. This study describes as a newly emerging pathogen responsible for leaf blight and fruit rot in strawberries in Germany.
View Article and Find Full Text PDFJ Fungi (Basel)
January 2025
Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
Palm trees () are among the most popular ornamental plants worldwide. Despite extensive research on the fungi associated with , the diversity and ecological dynamics of fungi affecting ornamental palms remain poorly studied, although they have significant impact on palm health and economic value. Furthermore, while research on palm fungal diversity has traditionally focused on tropical assemblages, ornamental palms in temperate climates offer a unique opportunity to explore the diversity of palm fungi in non-native habitats.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Institute of Plant Protection, Hainan Academy of Agricultural Sciences, Haikou, China.
The tea mosquito bug, Waterhouse (Hemiptera: Miridae), is a devastating piercing-sucking pest in tropical tea plantations. The Hainan Dayezhong (HNDYZ) is a large-leaf tea cultivar widely cultivated around the Hainan tea region in South China. However, information regarding the feeding damage of on the HNDYZ tea plant remains scarce.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
School of Life Science, Henan University, Kaifeng, Henan, 475004, People's Republic of China.
In watermelon (Citrullus lanatus), lesion mimic is a rare, valuable trait that can be used by breeders for selection at early growth stages. In this study, we tested a seven-generation family to determine the inheritance and genetic basis of this trait. As revealed by analysis of the lesion mimic mutant clalm, this trait is controlled by a single dominant gene.
View Article and Find Full Text PDFFungal Syst Evol
December 2024
Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
Novel species of fungi described in this study include those from various countries as follows: , from accumulated snow sediment sample. , on leaf spots of . , on submerged decaying wood in sea water, on , as endophyte from healthy leaves of .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!