Anion exchange in halide perovskites offers prospective approaches to band gap engineering for miniaturized and integrated optoelectronic devices. However, the band engineering at the nanoscale is uncontrollable due to the rapid and random exchange nature in the liquid or gas phase. Here, we report a source-limiting mechanism in solid-state anion exchange between low-dimensional perovskites, which readily gives access to ultralong compositional gradient nanowires (NWs) with lengths of up to 100 μm. The exchanged NWs remain single-crystalline with intact morphology, while the halogen content exhibits an apparent gradient distribution, leading to a tapered energy band profile along a NW. In the dynamic study of anion behavior, it is shown that the spatial stoichiometric composition can be precisely tuned following Fick's law of diffusion. In addition, self-powered, spectrally resolved photodetectors incorporating multiple detection units within a single gradient NW are demonstrated. This work provides a feasible strategy for the realization of perovskite-based ultracompact optoelectronics, imaging sensors, and other miniaturized semiconductor devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.4c06676DOI Listing

Publication Analysis

Top Keywords

anion exchange
12
ultralong compositional
8
compositional gradient
8
gradient
4
gradient perovskite
4
perovskite nanowires
4
nanowires fabricated
4
fabricated source-limiting
4
anion
4
source-limiting anion
4

Similar Publications

Recovery and purification of acetic acid from extremely diluted solutions using a mixed bed ion exchange resin - technical feasibility.

RSC Adv

January 2025

TECNALIA, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de San Sebastián Mikeletegi Pasealekua 2 20009 Donostia-San Sebastián Spain +34 944 041 445 +34 946 430 850.

A downstream process for the recovery and purification of acetic acid (AA) from an extremely diluted solution (100 mg L) also containing a mixture of contaminating inorganic salts in the form of bicarbonates, phosphates, sulfates and chlorides (DPM medium) has been developed, showing its technical feasibility. The process involves two successive steps based on the use of a mixed bed ion exchange (IEX) resin. The first step, a demineralization treatment to remove the inorganic anions that could potentially interfere with the recovery and purification of AA, involves a combined treatment of calcium precipitation, acidification with the Amberlite IR-120 resin and treatment with the Amberlite MB20 mixed bed resin.

View Article and Find Full Text PDF

Background Aims: Extracellular vesicles (EVs) have gained traction as potential cell-free therapeutic candidates. Development of purification methods that are scalable and robust is a major focus of EV research. Yet there is still little in the literature that evaluates purification methods against potency of the EV product.

View Article and Find Full Text PDF

Metals in Motion: Understanding Labile Metal Pools in Bacteria.

Biochemistry

January 2025

Department of Microbiology, Cornell University, Ithaca, New York 14853-8101, United States.

Metal ions are essential for all life. In microbial cells, potassium (K) is the most abundant cation and plays a key role in maintaining osmotic balance. Magnesium (Mg) is the dominant divalent cation and is required for nucleic acid structure and as an enzyme cofactor.

View Article and Find Full Text PDF

Microbially induced calcite precipitation (MICP) while neutralizing soil pH, can lead to pore clogging which in turn may reduce bacteria transport. This study aimed to evaluate the effectiveness of the MICP process for E. coli filtration in two acidic soils.

View Article and Find Full Text PDF

An exchangeable SIM probe for monitoring organellar dynamics of necrosis cells and intracellular water heterogeneity in kidney repair.

Proc Natl Acad Sci U S A

January 2025

Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, People's Republic of China.

Monitoring subcellular organelle dynamics in real time and precisely assessing membrane heterogeneity in living cells are very important for studying fundamental biological mechanisms and gaining a comprehensive understanding of cellular processes. However, there remains a shortage of effective tools for these purposes. Herein, we propose a strategy to develop the exchangeable water-sensing probeAPBD for time-lapse imaging of dynamics in cellular membrane-bound organelle morphology with structured illumination microscopy at the nanoscale.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!