A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Transmission Electron Microscopy of Coral Tissue. | LitMetric

Transmission Electron Microscopy of Coral Tissue.

Curr Protoc

Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina.

Published: November 2024

Coral reefs are invaluable ecosystems that are under threat from various anthropogenic stressors. There has been a recent increase in the diagnostic tools utilized to understand how these threats impact coral reef health. Unfortunately, the application of diagnostic tools like transmission electron microscopy (TEM) is not as standardized or developed in coral research as in other research fields. Utilizing TEM in conjunction with other diagnostic methods can aid in understanding the impact of these stressors on the cellular level because TEM offers valuable insight into the structures and microsymbionts associated with coral tissue that cannot be obtained with a conventional light microscope. Additionally, a significant amount of coral tissue ultrastructure has not yet been extensively described, causing a considerable gap in our understanding of cellular structures that could relate to the immune response, cellular function, or symbioses. Moreover, additional standardization is needed for TEM in coral research to increase comparability and reproducibility of findings across studies. Here, we present standardized TEM sample fixation, embedding, and sectioning techniques for coral studies that ensure consistent ultrastructural preservation and minimize artifacts, enhancing the reliability and accuracy of TEM observations. We also demonstrate that these TEM protocols allow for the observation and quantification of bacterial and viral-like particles within the coral tissue as well as the endosymbiotic microalgae, potentially providing insight into their interactions within coral cells and how they relate to overall coral health and resilience. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Primary fixation Basic Protocol 2: Decalcification Basic Protocol 3: Sample dissection, secondary fixation, dehydration, and embedding Basic Protocol 4: Sectioning and grid staining Basic Protocol 5: Imaging.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cpz1.70033DOI Listing

Publication Analysis

Top Keywords

basic protocol
20
coral tissue
16
coral
11
transmission electron
8
electron microscopy
8
diagnostic tools
8
tem
7
basic
5
protocol
5
microscopy coral
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!